簡易檢索 / 詳目顯示

研究生: 邱樺岳
Chiu, Hua-yueh
論文名稱: 高線性度,低電壓CMOS混頻器與新式倍頻器及耦合器單晶微波積體電路之研製
Implementation of High-Linearity, Low-Voltage CMOS Mixer and the Novel Doubler, Couplers MMIC
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 吉爾伯特混頻器環型耦合器馬遜巴倫倍頻器基頻抑制力三倍頻抑制力屏蔽式共平面波導共平面波導雙面耦合
外文關鍵詞: Marchand Balun, Gilbert Mixer, Ring coupler, Doubler, Fundamental suppression, Three-order suppression, Coplanar waveguide with ground shield, Coplanar, Broadside- coupled
相關次數: 點閱:172下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以TSMC 0.18 um 1P6M CMOS製程研製5.8GHz 高線性度低電壓混頻器,以及分別利用WIN和TransCOM 0.15μm InGaAs PHEMT製程研製新式倍頻器與微小化寬頻環型耦合器,還有以FR4基板實現2.4GHz雙面單層式3dB共平面波導耦合器。

    首先,我們為了解決傳統吉爾伯特混頻器有三顆電晶體操作在飽和區的缺點,所以利用並聯ㄧ對LC Tank來阻隔直流路徑,降低偏壓的使用,以及利用Cross-Connect的架構來改善線性度( IIP3 )。由於LC Tank共振頻率偏移,最後量測到的轉換增益為-13dB,線性度IIP3為10.5dB,埠對埠之間的隔離度也在合理範圍。再來,我們利用輸入端採用馬遜巴倫電路設計單平衡式倍頻器,把二集體反向相接,利用相位相消的方式來抑制奇次諧波,由於利用馬遜巴倫取代傳統巴倫,可以大幅度的減少面積,最後在輸入頻率9GHz ~ 14.5GHz範圍內,輸入功率為13dBm,量測得到轉換損耗為-11.2±1dB,基頻抑制力有11±1dBc,而三倍頻抑制力有25±10dBc。接著,我們所設計微小化寬頻環型耦合器,是利用1/4λ藍吉耦合器及屏蔽式共平面波導(CPWG)作取代,使整體面積縮小且可延伸頻寬至整個Ka頻帶。最後,為了簡化傳統雙面耦合架構的90度耦合器在製作上的困難,因此利用共平面波導的方式,來製作雙面單層式3dB共平面波導耦合器,大大的減少花費及難度。

    This thesis presents the implementation of high-linearity, low-voltage CMOS Mixer at 5.8 GHz in TSMC standard 0.18um CMOS process. A novel frequency doubler and a miniaturized broadband hybrid ring by using WIN and Transcom InGaAs PHEMT process, respectively, have been demonstrated. Final, a 3-dB quadrature coupler using broadside-coupled coplanar waveguides at 2.4 GHz in PCB is realized.

    First, a parallel LC-tank structure is added into Gilbert mixer for low operation voltage purpose. In RF stage, a cross-connect configuration with four pMOSs to replace the traditional nMOSs connection is proposed not only to reduce the noise figure but also to increase linearity. It exhibits a conversion gain of -13dB, IIP3 of 10.5 dB. Second, we design the single balanced frequency doubler with input Marchand balun. Due to the anti-phase relationships of the diodes, the odd harmonics can be suppressed. Using Marchand balun to replace hybrid circuits can reduce die size. It exhibits a conversion gain of -11.2±1dB, fundamental suppression of 11±1dBc and three-order suppression of 25±10dBc from 9 GHz to 14.5 GHz at 13 dBm input power. Third, a novel construction hybrid ring used 1/4λ Lange coupler and CPWG for reducing size and extending bandwidth. Final, a single-layer 3-dB quadrature coupler using broadside- coupled coplanar waveguides has been designed and analyzed. The proposed method enabled the recently published couplers with a broadside-coupled structure to be easily designed on a single-layer printed circuit without using a multi-layer substrate and an external metallic box.

    第一章 緒論 ... 1 1.1 研究動機 ... 2 1.2 章節簡介 ... 3 第二章 具高線性度低電壓CMOS混頻器 ... 4 2.1 CMOS混頻器架構及規格介紹 ... 4 2.1.1 轉換增益/損耗( Conversion Gain / Loss ) ... 4 2.1.2 隔離度( Isolation ) ... 5 2.1.3 信號1-dB增益壓縮點(One dB compression point,P1dB).. 6 2.1.4 三階截斷點( Third order intercept point,IP3 ) ... 7 2.1.5 雜訊指數( Noise Figure,NF ) ... 8 2.2 CMOS主動式混頻器原理 ... 10 2.2.1 單端平衡式混頻器( Single-balanced mixer ) .... 10 2.2.2 雙平衡混頻器( Double-balanced mixer )... 11 2.3 CMOS混頻器設計架構說 ..... 15 2.3.1 採用低中頻架構 ... 15 2.3.2 阻隔DC路徑使低電壓操作 ... 16 2.3.3 Cross-Connect架構改善線性度 ... 17 2.3.4 中頻頻率的選擇 ... 19 2.4 CMOS混頻器模擬結果 ... 22 2.5 CMOS混頻器外部匹配電路 ... 26 2.5.1 180度環型耦合器 ... 26 2.5.2 200MHz LC Balun電路 ... 27 2.5.3匹配及鎊線電路 ... 29 2.6 CMOS混頻器量測結果 ... 30 2.7 結論與探討 ... 34 第三章 利用Marchand巴倫組成之PHEMT二倍頻器 ... 36 3.1 前言 ... 36 3.2 被動式倍頻器架構簡介 ... 36 3.2.1單二極體電阻性倍頻器 ... 36 3.2.2單平衡式倍頻器:輸入端加上巴倫電路 ... 38 3.2.3單平衡式倍頻器:輸出端加上巴倫電路 ... 39 3.2.4雙平衡式倍頻器 ... 40 3.2.5變容二極體倍頻器 ... 41 3.3 設計原理 ... 43 3.4 模擬與佈局驗證 ... 46 3.5 PHEMT倍頻器量測結果 ...50 3.6 結論與探討 ... 54 第四章 各式傳統耦合器之介紹 ... 55 4.1 前言 ... 55 4.2 180°耦合器( 180 deg coupler ) ... 55 4.2.1環型耦合器( Ring coupler ) ... 55 4.2.2集總式環形耦合器( Lump-element hybrid coupler ) ... 57 4.2.3神奇T型接面( Magic Tee junction ) ... 58 4.2.4巴倫電路( Balun ) ... 60 4.3 90°耦合器( 90 deg coupler ) ... 62 4.3.1枝幹耦合器( Branch line coupler ) ... 62 4.3.2集總式枝幹耦合器( Lump-element branch coupler ) ... 63 4.3.3藍吉耦合器( Lange coupler ) ... 64 4.4 0°耦合器( 0 deg coupler ) ... 65 4.4.1威爾金森耦合器( Wilkinson coupler ) ... 65 4.4.2集總式威爾金森耦合器(Lump-element Wilkinson coupler) ... 66 第五章 應用於Ka頻段微小化之寬頻180度環型耦合器 ... 67 5.1 前言 ... 67 5.2 環型耦合器架構簡介 ... 67 5.3 設計原理及模擬結果 ... 71 5.3.1 新式1/4λ環型耦合器without CPWG ... 71 5.3.2 新式1/4λ環型耦合器with CPWG ... 74 5.4 佈局驗證與量測結果 ... 77 5.5 結論與探討 ... 81 第六章 雙面單層式3dB共平面波導耦合器 ... 82 6.1 前言 ... 82 6.2 雙面耦合器架構簡介 ... 82 6.3 設計原理及佈局 ... 85 6.4 實作與量測結果 ... 88 6.5 結論與探討 ... 91 第七章 結論... 92

    [1] P. R. Gray , and R.G. Meyer, “Future directions in silicon ICs for RF personal communications,” Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 83-90, 1995.
    [2] M. Golio, “Commercial Wireless Circuit and Components Hand Book, ” CRC RRESS, 2003.
    [3] K. Chang, “Microwave Solid-State Circuit and Applications, ” JOHN WILEY & SONS, 1994.
    [4] T. Edwards, “Foundations for Microstrip Circuit Design, 2/E, ” JOHN WILEY & SONS, 1992.
    [5] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design, 2/E, ” Prentice Hall Inc., 1997.
    [6] J. Helszajn, “Microwave Engineering: Passive, Active and Non-reciprocal Circuits, ” McGraw-Hill Book Company, 1992.
    [7] R. Ludwing, and P. Bretechko, RF Circuit Design Theory and Applications, Prentice Hall Inc., 2000.
    [8] R. Mongia, I. Bahl, and P. Bhartia, “RF and Microwave Coupled-Line Circuits, ” Artech House, INC., 1999
    [9] S. A. Maas, “Microwave Mixer, ” Artech House, 1993.
    [10] B. Razavi, “RF Microelectronics, ” Prentice Hall PTR, 1998.
    [11] H. J. Wei, “Design and Implementation of Dual-Gate Mixer and Low-Voltage Folded Mixer for Direct Up-Conversion System,” Institute of Microelectronics Department of Electrical Engineering, National Cheng Kung University Tainan, Taiwan, R.O.C, Thesis of Master of Science, July 2005.
    [12] J. N. Babaneshad, and G. C. Temes, “A 20-V Four-Quadrant CMOS Analog Multiplier,” IEEE Journal of Solid-State Circuits, vol.sc-20, no. 6, pp. 1158-1168, December 1985.
    [13] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low Voltage Performance of a Microwave CMOS Gilbert Cell Mixer,” IEEE Solid-State Circuits, vol.32, no. 7, pp. 1151-1155, July 1997.
    [14] O. Mitrea, C. Popa, A. M. Manolescu, and M. Glesner, “A linearization technique for radio frequency CMOS Gilbert-type mixers,” Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th IEEE nternational Conference on, vol. 3, pp. 1086-1089, 14-17 Dec 2003.
    [15] C. C. Tang, W. S. Lu, L. D. Van, and W. S. Feng, “A 2.4 GHz CMOS down-conversion doubly balanced mixer with low supply voltage,” in Proc. IEEE Int. Symp. Circuits Systems (ISCAS), vol. 4, pp. 794-797, May 2001.
    [16] X. Wang, and R. Weber, “A novel low-voltage low-power 5.8 GHz CMOS down-conversion mixer design,” in Proceedings of Radio and Wireless Conference ( RAWCON), pp301–304, 10-13 Aug. 2003.
    [17] S. Otaka, M. Ashida, M. Ishii, and T. Itakura, “A +10-dBm IIP SiGe mixer with IM3 cancellation technique,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2333–2341, Dec. 2004.
    [18] H. M. Tuncer, F. Udrea, and G. A. J. Amaratunga, “A 5 GHz low power 0.18μm CMOS Gilbert cell mixer,” in Proc. IEEE Int. Symp. Semiconductor Conference, vol.1 4-6 Oct .2004.
    [19] V. Vidojkovic, J. Tang, A. Leeuwenburgh, and H. M. Roermund, A., “A low-voltage folded-switching mixer in 0.18-/spl mu/m CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, issue 6, pp. 1254-1264, June 2005.
    [20] M. F. Huang, C. J. Kuo, and S. Y. Lee, “A 5.25-GHz CMOS folded-cascode even-harmonic mixer for low-voltage applications,” Microwave Theory and Techniques, vol.54, Issue 2, part 1, pp. 660-669, Feb. 2006.
    [21] S. A. Maas, “The RF and Microwave Circuit Design Cookbook, ” Artech House, INC., 1998
    [22] E. Camargo, “Design of FET Frequency Multipliers and Harmonic Oscillators, ” Artech House INC., 1998
    [23] S. A. Maas, Nonlinear Microwave Circuits, Artech House INC., 1988
    [24] M. T. Faber, J. W. Archer, and R. J. Mattauch, “A Frequency Doubler with 35 Percent Efficiency at W Band,” Microwave J., vol. 28, No. 7, pp.145, July 1985.
    [25] S. A. Mass, and Y. Ryu, “A Broadband, Planar, Monolithic Resistive Frequency Doubler,” IEEE MTT-S international Microwave Symposium. Digest, vol. 1, pp.443-446, 23-27 May 1994.
    [26] A. Suarez, and R. Melville, “Simulation-assisted design and analysis of varactor-based frequency multipliers and dividers,” IEEE Transactions on, Microwave Theory and Techniques, vol. MTT-54, No. 3, pp. 1166-1179, March 2006.
    [27] R. E. Lipsey, and S. H. Jones, “Accurate design equations for 50-600 GHz GaAs Schottky diode varactor frequency doublers,” IEEE Transactions on , Electron Devices, vol.MTT-45, No. 9, pp. 1876 – 1882, Sept. 1998.
    [28] M. Kimishima, W. Hioe, T. Ataka, and H. Kkabe, “A family of Q, V and W-band monolithic resistive mixers,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 115-118, June 2001.
    [29] S. A. Maas, “Nonlinear Microwave Circuits,” Artech House Inc., 1988.
    [30] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A Broadband and Miniaturized V-Band pHEMT Frequency Doubler,” IEEE Microwave and Guided Wave Letters, vol. 10, No. 7, pp. 276-278, July 2000.
    [31] K. L. Deng , and K. Wang,, “A Miniature Broad-Band pHEMT MMIC Balanced Distributed Doubler,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-51, No. 4, pp. 1257-1261, Apr. 2003.
    [32] C. F. Jou, W. W. Lam, H. Z. Chen, K. S. Stolt, N. C. Luhmann, and D. B. Rutledge, “Millimeter-wave diode-grid frequency doubler,” IEEE Transactions on , Microwave Theory and Techniques, vol. MTT-36, No. 11, pp.1507-1514, Nov. 1988.
    [33] S. Basu, S. A. Maas, and T. Itoh, “Stability analysis for large signal design of a microwave frequency doubler,” IEEE Transactions on , Microwave Theory and Techniques, vol. MTT-43, No.12, Part 2, pp.2890-2898, Dec. 1995.
    [34] C. P. Hu “Millimeter Wave Frequency Multipliers Employing Semiconductor Diodes in a Balanced Configuration,” 16th European Microwave Conf, Proceedings, pp. 247-251, Sept. 1986.
    [35] F. V. Raay, amd G. Kompa, “Design and stability test of a 2-40 GHz frequency doubler with active balun,” 2000 IEEE MTT-S International Microwave Symposium Digest., vol. 3, pp. 1573-1576.
    [36] A. K. Agrawal , and G. F. Mikucki, “A printed –circuit hybrid-ring directional coupler for arbitary power divisions, ” IEEE Trans. Microwave Theory and Techniques, Vol. MTT-34, No.12, pp. 1401-1407, Dec. 1986.
    [37] J. P. Samuel, “180° Lumped Element Hybrid,” in lEEE MTT-S Int. Dig, 1989, pp. 1243-1246.
    [38] P. A. Rizzi, “Microwave Engineering Passive Circuits, ” Prentice-Hall, Inc. 1988
    [39] R. Mongia, I. Bahl, and P. Bhartia, “RF and Microwave Coupled-Line Circuit, ” Artech House, Inc 1999
    [40] K. S. Ang, and I. D. Robertson, “Analysis and Design of Imepedance-Transforming Planar Marchand Baluns”, IEEE Trans. Microwave Theory Tech., vol.MTT-49, No.2, pp. 402-406, Feb., 2001.
    [41] D. M. Pozar, “Microwave engineering, 2/E, ” John Wiley & Sons, 1998.
    [42] R. Waugh , and D. LaComble, “Unfolding the Lange coupler,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-20, No. 11, pp. 777-779, Nov. 1972.
    [43] D. D. Paolino, “Design equations for interdigital directional coupler,” Microwaves, Vol. 15, No. 5, pp. 34-38, May. 1976.
    [44] J. Lange, “Interdigitated stripline quadrature hybrid,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-17, No. 12, pp. 1150-1151, Dec. 1969.
    [45] D. I. Kim , and G. S. Yang, “Design of new hybrid-ring directional coupler using λ/8 or λ/6 sections,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-39, No. 10, pp. 1779-1784, Oct. 1991.
    [46] S. March, “A wideband stripline hybrid ring,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, No..pp. 361, June 1968.
    [47] S. Rehnmark, “Wide-band balanced line microwave hybrids,” IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 825-830, Oct. 1977.
    [48] B. R. Heimer, L. Fan, and K. Chang, “Uniplanar Hybrid Couplers Using. Asymmetrical Coplanar Striplines,” IEEE Trans. Microwave Theory Tech., vol. MTT-45, no. 12, pp. 2234-2240, Dec. 1997.
    [49] T. Wang ,and K. Wu, “Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s,” IEEE Trans. Microwave Theory Tech., vol.MTT-47, No. pp. 198-206, Feb. 1999.
    [50] C. Y. Chang, and C. C. Yang, “A Novel Broad-Band Chebyshev- Response Rat-Race Ring Coupler,” IEEE Trans. Microwave Theory Tech., vol. MTT-47, no. 4, pp. 455-462, Apr.. 1999.
    [51] T. Kawai, Y. Kokubo, and I. Ohta, “Broadband Lumped-element 180-degree Hybrids Utilizing Lattice Circuits,” in lEEE MTT-S Int. Dig, vol. 1, pp. 47-50, May 2001.
    [52] J. Lange, “Interdigitated stripline quadrature hybrid, ” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 1150-1151, Dec. 1969.
    [53] D. Kajfez, Z. Paunovic, and S. Pavlin, “Simplified design of Lange coupler,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.806-808, Oct. 1978.
    [54] R. Waugh, and D. LaCombe, “Unfolding the Lange coupler,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 777-779, 1972.
    [55] M. Kumar, R. J. Menna, and H. C. Huang, “Planar Broad-Band 180° Hybrid Power Divider/Combiner Circuit,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, no. 12, pp. 1233-1235, Nov. 1981.
    [56] K. S. Ang, and Y. C. Leong, “Converting Baluns Into Broad-Band Impedance-Transforming 180° Hybrids,” IEEE Trans. Microwave Theory Tech., vol. MTT-50, no. 8, pp. 1990-1995, Aug. 2002.
    [57] Z. Liu, and R. M. Weikle, “A 180° Hybrid Based On Interdigitally Coupled Asymmetrical Artificial Transmission Lines,” in lEEE MTT-S Int. Dig, pp. 1555-1558, June 2006.
    [58] C. H. Chi, and C. Y. Chang, “A new class of wideband multisection 180° hybrid rings using vertically installed planar couplers,” IEEE Trans. Microwave Theory Tech., vol. MTT-54, no. 6, pp. 2478-2486, June 2006.
    [59] J. Rogers, and R. Bhatia, “A 6 to 20 GHz Planar Balun Using a Wilkinson Divider and Lange Couplers,” in lEEE MTT-S Int. Dig, pp. 865-868, Jul. 1991.
    [60] B. J. Minnis, and M. Healy, “New broadband Balun Structures for Monolithic Microwave Integrated Circuit,” in lEEE MTT-S Int. Dig, vol. 2, pp. 425-428, June 1991.
    [61] C. V. Maciel, F. M. Argollo, and H. Abdalla, Jr, “Broadside suspended 3-dB couplers,” in Proc. SBMO Int. Microw. Conf., vol. 1, pp. 117-122, Aug. 1993.
    [62] D. F. M. Argollo, H. Abballa, Jr, and A. J. M. Soares, “Method of lines applied to broadside suspended stripline coupler design,” IEEE Trans. Magn., vol. 31, pp. 1634-1636, May 1995.
    [63] T. Hatsuda, “Computation of coplanar-type strip-line characteristics by relaxation method and its application to microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. MTT- 23, no.10, pp. 795-802, Oct. 1975.
    [64] M. Nedil, T. A. Denidni, and L. Talbi, “Novel butler matrix using CPW multilayer technology,” IEEE Trans. Microw. Theory Tech., vol.MTT- 54, no.1, pp. 499-507, Jan. 2006.
    [65] M. Nedil, T. A. Denidni, and L. Talbi, “Design of a new directional coupler using CPW multilayer technology,” Microw. and Optical Technol. Lett., vol. 48, pp. 471-474, Mar. 2006.
    [66] T. Tanaka, K. Tsunoda, and M. Aikawa, “Slot-coupled directional couplers between double-sided substrate microstrip lines and their applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-36, no.12, pp. 1752-1757, Dec. 1988.
    [67] A. Sawicki, and K. Sachse, “Novel coupled-Line conductor-backed coplanar and microstrip directional couplers for PCB and LTCC applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-51, no.6, pp. 1743-1751, June 2003.
    [68] F. Tefiku, E. Yamashita, and J. Funada, “Novel directional couplers using broadside-coupled coplanar waveguides for double-sided printed antennas,” IEEE Trans. Microw. Theory Tech., vol. MTT-44, no.2, pp. 275-282, Feb. 1996.
    [69] M. Nakajima, E. Yamashita, and M. Asa, “New broad-band 5-section microstrip-line directional coupler,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 383-386, May 1990.
    [70] P. Meissner , and M. Kitlinski,” A 3-dB multilayer coupler with UC-PBG structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no.2, pp. 52-54, Feb. 2005.

    下載圖示 校內:2009-07-23公開
    校外:2012-07-23公開
    QR CODE