簡易檢索 / 詳目顯示

研究生: 張勝昌
Chang, Sheng-Chang
論文名稱: 複雜工程系統的循序暫緩設計方法
Iterative Suspension and Solution Strategy for Complex Multidisciplinary Engineering Design
指導教授: 詹魁元
Chan, Kuei-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 複雜系統設計多階層架構解析目標傳遞法暫緩策略耦合強度active-set策略
外文關鍵詞: Complex System Design, Hierarchical System, Analytical Target Cascading, Suspension Strategy, Coupling Strength, Active-Set Strategy
相關次數: 點閱:95下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大尺度複雜系統的設計問題由於整體系統複雜性以及子系統間的耦合,長久以來是一個具有挑戰性的問題,在過往文獻中,針對複雜系統之設計方法主要有兩種:協同最佳化方法( Collaborative Optimization, CO)以及解析目標傳遞法(Analytical Target Cascading, ATC),此兩種方法皆是利用系統化的拆解方式,將複雜系統拆解成較小的子系統進行求解,在求解過程中,藉由各子系統的協調,可以達到與未拆解前系統的相同最佳值。倘若將焦點轉移至複雜系統之拆解方式,將階層狀架構配合不同的拆解方式並探討其複雜系統的收斂性,我們發現不同的架構對於收斂性也有著不同影響,因此本文旨在針對階層狀架構配合ATC策略發展出一循序暫緩設計方法,嘗試以適當修改架構來解決複雜系統設計問題。在本設計方法的每次迭代計算中,我們利用改良全域敏感度矩陣計算出各子系統間的耦合強度,當子系統擁有較小的耦合強度時,便將其暫時移除並更新架構,同時在下次迭代計算時以新架構進行求解,直到架構再度更新。此外,為進一步減少計算成本,我們也加入active-set 策略--只針對最佳值有貢獻之拘束條件進行計算。本設計方法是經由下列方式來改善計算成本:(i)避免某些結構在數值運算上求解困難;(ii)根據每次迭代結果,可將較不重要的子系統去耦合(移除),只留下重要的子系統進行計算;(iii)並同時針對單一子系統的計算加以化簡。本論文最後將以一個數學範例、一個固定架設計範例與一個簡易汽車設計範例來展示此設計方法的有效性和效率,並與現有複雜系統最佳化設計方法--解析目標傳遞法中的增廣拉格朗日策略(ATC-AL)做一比較。

    Design problems for large-scale systems are challenging to solve due to their overall complexity and the coupling between each subsystems. Methods in the literature, such as collaborative optimization and analytical target cascading (ATC), systematically resolve the problem of large-scale systems by decomposing them into smaller subsystems. By deliberately coordinating between them, these subsystems could reach the same optimum as they were undecomposed. In this work we investigate the impact of hierarchical structure on the convergence of a large-scale system with a dynamic decomposition schemes via ATC. It is found that the impacts of problem structures are major. Therefore we combine the optimal decomposition with ATC to form an iterative suspension and solution strategy. In this strategy, the coupling strengths between subsystems are calculated at each design iteration using modified global sensitivity equations. Subsystems with small coupling strengths are tentatively removed (suspended) and the resulting structure re-evaluated. To further reduce the computation cost, active-set concepts are implemented such that only constraints contributing to the optimum are considered. This new strategy can improve computation cost in several ways : (i) it avoids structures that are numerically difficulty to solve; (ii) it results in a decoupling scenario with only "important" subsystems; (iii) it uses minimal efforts in solving a subsystem. The effectiveness and the efficiency of the proposed method is compared with ATC using augmented Lagrangian via a numerical example and an optimal structural design case study.

    書名頁 i 論文口試委員審定書 ii 中文摘要 iii 英文摘要 iv 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xii 符號說明 xiii 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 本文架構 4 第二章、研究背景與文獻回顧 5 2.1 複雜系統整合與設計 5 2.1.1 解析目標傳遞法 5 2.1.2 系統架構與演算流程 6 2.1.3 解析目標傳遞法數學模型 8 2.1.4 解析目標傳遞法策略發展 12 2.2 耦合強度 18 2.2.1 基於全域敏感度分析之耦合強度 18 2.2.2 基於改良全域敏感度分析之耦合強度 20 2.2.3 控制與設計雙系統之耦合強度 23 2.3 現行之暫緩設計策略 23 2.3.1 基於耦合強度之暫緩策略 23 2.3.2 基於連續線性近似演算法之暫緩策略 25 2.4 現行文獻待解決之困難 26 第三章、研究方法 27 3.1 整體系統設計策略 28 3.2 子系統架構之暫緩策略 30 3.2.1 耦合強度 30 3.2.2 暫緩策略 32 3.3 子系統最佳化模型之active-set策略 34 3.3.1 拘束條件之移除 34 3.3.2 拘束條件之重置 35 3.3.3 active-set策略之執行 35 3.4 設計策略總結 36 第四章、數學與工程範例 39 4.1 簡化幾何規劃數學範例 39 4.1.1 問題描述與模型建構 39 4.1.2 結果與討論 41 4.2 固定架設計工程範例 43 4.2.1 問題描述與模型建構 43 4.2.2 結果與討論 48 第五章、考量美學設計之簡易車輛系統設計 51 5.1 系統簡介 52 5.1.1 車體美學次系統 52 5.1.2 車輛空氣動力學次系統 56 5.1.3 車體防撞性次系統 58 5.1.4 車輛操控穩定性次系統 61 5.2 子系統整合與最佳化模型 65 5.2.1 子系統模型修正 66 5.2.2 子系統參數與變數設定 67 5.3 結果與討論 68 第六章、研究貢獻與未來方向 74 6.1 研究貢獻 74 6.2 未來研究方向與建議 75 參考文獻 78 自傳 82

    [1] Oxford University Press, Concise Oxford English Dictionary. Oxford, UK: Oxford University Press, 2010.
    [2] J. Allison, “Complex system optimization: A review of analytical target cascading, collaborative optimization, and other formulations,” Master’s thesis, Department of Mechanical Engineering in University of Michigan, 2004.
    [3] R. Braun, Collaborative Optimization: Am Architecture for Large-scale Distributed Design. PhD thesis, Stanford University, April 1996.
    [4] H. Kim, N. Michelena, P. Papalambros, and T. Jiang, “Target cascading in optimal system design,” Journal of Mechanical Design, vol. 125, no. 3, pp. 474–480, 2003.
    [5] N. Michelena, H. Kim, and P. Papalambros, “A system partitioning and optimization approach to target cascading,” in Proceedings of the 12th International Conference on Engineering Design, (Munich, Germany), August 24-26 1999.
    [6] N. Michelena, H. Park, and P. Papalambros, “Convergence properties of analytical target cascading,” AIAA Journal, vol. 41, no. 5, pp. 897–905, 2003.
    [7] N. Michelena and P. Papalambros, “A hypergraph framework for optimal model-based decomposition of design problems,” Computational Optimization and Applications, vol. 8, no. 2, pp. 173–196, 1997.
    [8] Y. Li, Z. Lu, and J. Michalek, “Diagonal quadratic approximation for parallelization of analytical, target cascading,” Journal of Mechanical Design, vol. 130, no. 5, pp. 0514021–05140211, 2008.
    [9] J. Michalek and P. Papalambros, “An efficient weighting update method to achieve acceptable consistency deviation in analytical target cascading,” Journal of Mechanical Design, vol. 127, no. 2, pp. 206–214, 2005.
    [10] S. Tosserams, L. Etman, P. Papalambros, and J. Rooda, “An augmented lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers,” Structural and Multidisciplinary Optimization, vol. 31, no. 3, pp. 176–189, 2006.
    [11] J. Lassiter, M. Wiecek, and K. Andrighetti, “Lagrangian coordination and analytical target cascading: Solving ATC-decomposed problems with Lagrangian duality,” Optimization and Engineering, vol. 6, no. 3, pp. 361–381, 2005.
    [12] J. Han and P. Papalambros, “A sequential linear programming coordination algorithm for analytical target cascading,” Journal of Mechanical Design, vol. 132, no. 2, pp. 0210031–0210038, 2010.
    [13] K.-Y. Chan, “Sequential linearization in analytical target cascading for optimization of complex multilevel systems,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 225, no. 2, pp. 451–462, 2011.
    [14] J. Han and P. Papalambros, “An slp filter algorithm for probabilistic analytical target cascading,” Structural and Multidisciplinary Optimization, vol. 41, no. 6, pp. 935–945, 2010.
    [15] J. Sobieszczanski-Sobieski, “Sensitivity of complex, internally coupled systems,” AIAA Journal, vol. 28, no. 1, pp. 153–160, 1990.
    [16] C. Bloebaum, “Coupling strength-based system reduction for complex engineering design,” Structural Optimization, vol. 10, no. 2, pp. 113–121, 1995.
    [17] K. English, C. Bloebaum, and E. Miller, “Development of multiple cycle coupling suspension in the optimization of complex systems,” Structural and Multidisciplinary Optimization, vol. 22, no. 4, pp. 268 – 283, 2001.
    [18] S. Alyaqout, P. Papalambros, and A. Ulsoy, “Quantification and use of system coupling in decomposed design optimization problems,” in Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition, (Orlando, FL, USA), November 5-11 2005.
    [19] H. Fathy, J. Reyer, P. Papalambros, and A. Ulsoy, “On the coupling between the plant and controller optimization problems,” in Proceedings of the 2001 IEEE American Control Conference, (Arlington, VA, USA), June 25-27 2001.
    [20] J. Reyer, H. Fathy, P. Papalambros, and A. Ulsoy, “Comparison of combined embodiment design and control optimization strategies using optimality conditions,” in Proceedings of the 2001 ASME Design Engineering Technical Conference, (Pittsburgh, PA, USA),September 9-12 2001.
    [21] H. Fathy, P. Papalambros, and A. Ulsoy, “On combined plant and control optimization,” in Proceedings of the 8th Cairo University International Conference on Mechanical Design and Production, (Cairo, Egypt), January 4-6 2004.
    [22] U. Kirsch, Optimum Structural Design: Concepts, Methods, and Applications. New York, USA: McGraw-Hill Book Company, 1981.
    [23] J. Allison, M. Kokkolaras, and P. Papalambros, “On the impact of coupling strength on complex system optimization for single-level formulations,” in Proceedings of the 2005 ASME International Design Engineering Technical Conferences, vol. 2 A, pp. 265 – 275, 2005.
    [24] P. Papalambros and D. Wilde, Principles of Optimal Design. Cambridge, UK: Cambridge University Press, 2nd ed., 2000.
    [25] K.-Y. Chan, S. Skerlos, and P. Papalambros, “Monotonicity and activity set strategies in probabilistic design optimization,” Journal of Mechanical Design, vol. 128, no. 4, pp. 893–900, 2006.
    [26] 內政部統計處, “99年致人傷亡之道路交通事故統計,” tech. rep., 內政部統計處, 四月 2011.
    [27] G. Birkhoff, Aesthetic Measure. Whitefish, MT, USA: Kessinger Publishing, 2003.
    [28] H.-J. Park, A Quantification of Proportionality Aesthetics in Morphological Design. PhD thesis, Department of Architecture in The University of Michigan, 2005.
    [29] J. Rigau, M. Feixas, and M. Sbert, “Informational aesthetics measures,” vol. 28, pp. 24 –34, 2008.
    [30] ANSYS, Inc., Canonsburg, PA, USA, FLUENT, 2009. Release 12.
    [31] 林智群, “車輛碰撞之動態反應分析,” Master’s thesis, 大葉大學機械工程學系, 2003.
    [32] 劉俊宏, “車架結構之碰撞強度分析,” Master’s thesis, 大葉大學機械工程學系, 2002.
    [33] 許自男, “汽車操控行為下之避震阻尼分析,” Master’s thesis, 雲林科技大學機械工程學系, 2005.
    [34] J. Y. Wong, Theory of Ground Vehicles. Hoboken, NJ, USA: John Wiley & Sons Inc., 2008.
    [35] D. Krige, “A statistical approach to some mine valuation and allied problems on the Witwatersrand,” Master’s thesis, University of Witwatersrand, 1951.
    [36] P. Goovaerts, Geostatistics for Natural Resources Evaluation. Oxford, UK: Oxford University Press, 1997.
    [37] 長町三生, 感性工學. 東京, 日本: 海文堂, 1989.
    [38] H. Liu, W. Chen, M. Kokkolaras, P. Papalambros, and H. Kim, “Probabilistic analytical target cascading: A moment matching formulation for multilevel optimization under uncertainty,” Journal of Mechanical Design, vol. 128, no. 4, pp. 991–1000, 2006.
    [39] M. Kokkolaras, Z. Mourelatos, and P. Papalambros, “Design optimization of hierarchically decomposed multilevel systems under uncertainty,” Journal of Mechanical Design, vol. 128, no. 2, pp. 503–508, 2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE