研究生: |
黃琮訓 Huang, Tsung-Syun |
---|---|
論文名稱: |
以聚甲基丙烯酸甲酯為絕緣材料應用在有機薄膜電晶體之研究 Investigation of PMMA Dielectric Layer Applied in Organic Thin Film Transistors |
指導教授: |
蘇炎坤
Su, Yan-Kuin |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 123 |
中文關鍵詞: | 有機 、電晶體 、絕緣層 、聚甲基丙烯酸甲酯 |
外文關鍵詞: | organic, thin-film transistor, dielectric layer, PMMA |
相關次數: | 點閱:110 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文裡,針對以聚甲基丙烯酸甲酯(PMMA)為絕緣層製作之有機薄膜電晶體做了詳細的結構以及電特性的探討。在此實驗裡,我們選用四種不同的有機溶劑來溶解聚甲基丙烯酸甲酯,分別為甲苯、對二甲苯、鄰二氯苯以及氯仿,且以原子力顯微鏡來分析五聯苯(pentacene)成長在聚甲基丙烯酸甲酯薄膜上的粒徑大小以及粗糙度。在材料分析技術上,我們運用了X光繞射分析儀、接觸角、元素分析儀以及原子力顯微鏡來探討薄膜的成長品質。這部份的實驗證明了甲苯溶解聚甲基丙烯酸甲酯的效果是最好的。五聯苯薄膜成長於此溶液所製作之薄膜其品質也是最好。在此實驗中也發現用臭氧處理透明導電膜可降低流經聚甲基丙烯酸甲酯薄膜的漏電流。最大原因是聚甲基丙烯酸甲酯旋轉塗布於臭氧處理過的透明導電膜,其薄膜上的孔洞數量在25 μm2面積裡大幅減少從約47個降到19個。漏電流密度從1.5降到2.0 × 10-2 A/m2。藉由X光繞射分析儀及原子力顯微鏡對五聯苯的成長分析,以及不同厚度的元件電特性比較, 我們可以判定五聯苯成長於聚甲基丙烯酸甲酯薄膜的理想厚度為60 nm.
在本篇論文中,我們也以普遍常用到的二氧化矽為絕緣材料來製作有機薄膜電晶體,且以聚甲基丙烯酸甲酯之有機薄膜電晶體來比較,包括五聯苯的薄膜品質以及元件電特性。此研究證明了五聯苯薄膜沉積在聚甲基丙烯酸甲酯薄膜上之品質遠比沉積在二氧化矽表面來的好。實驗過程中,我們以X光繞射分析儀所量測出的數據推算出五聯苯沉積在聚甲基丙烯酸甲酯及二氧化矽的晶格品質。我們也使用了原子力顯微鏡來分析觀察五聯苯沉積在此兩絕緣層薄膜的表面型態以及藉由接觸角的量測推算出表面能的大小。以聚甲基丙烯酸甲酯為絕緣層所研製之有機薄膜電晶體其載子遷移率為0.241 cm2/Vs,整體電特性都遠比以二氧化矽為絕緣層之有機薄膜電晶體來的好。
加入氧化鉬(MoO3)於金跟五聯苯之間當做緩衝層可以得到更好的轉換特性; 臨界電壓 (VT) -11.5V、開關電流比7.7 × 104以及載子遷移率(μ)提升至0.48 cm2/Vs。藉由元素分析儀分析金跟五聯苯之介面,我們發現五聯苯之碳1s軌域的中心波峰有往高束縛能移動。對於金跟氧化鉬之間的0.2 eV能障,當VDS 持續提升時,載子能夠跳躍此能障進入氧化鉬薄膜,且有效的從氧化鉬薄膜注入到五聯苯薄膜。這就是為什麼當VDS增加到1.7 V,加入氧化鉬緩衝層的有機薄膜電晶體其特性會比沒有加入緩衝層元件來的好。除此之外,在鍍電極於五聯苯薄膜之前成長一層氧化鉬,能夠保護五聯苯在鍍電極的過程中免於破壞。因此我們可以藉由加入氧化鉬緩衝層來製作特性較好的有機薄膜電晶體。
The structure and electric characteristics of PMMA-based organic thin film transistor and their pentacene film grown on PMMA film have been investigated in this dissertation Four solvents, toluene, p-xylene, o-Dichlorobenzene, and chloroform were selected to dissolve PMMA and AFM was used to measure the grain size and roughness of pentacene grown on PMMA. Several material characterization techniques, such as X-ray diffraction (XRD), contact angle, X-ray photoelectron spectroscopy(XPS) and atomic force microscope (AFM) were performed to characterize the material quality. This study gave clear experimental evidence that the quality of pentacene grown on the PMMA dielectric layer dissolved in toluene is the best choice. The treatment of UV-ozone on ITO surface can reduces the leakage current through PMMA dielectric layer. With the UV-ozone cleaner treatment for ITO surface, the average number of pinholes in PMMA film deposited the ITO reduces from 47 to 19 (in 25 μm2 area). The leakage current density reduces from 1.5 to 2.0 × 10-2 A/m2. According to the analysis of XRD and AFM measurements, the optimum pentacene thickness grown on PMMA film was 60 nm.
In this dissertation, we have also compared the performance of PMMA-based OTFTs with that of SiO2-based OTFTs, including pentacene film quality and electric characteristics. This study also gave clear experimental evidence that the quality of pentacene grown on the PMMA layer was better than that grown on SiO2 dielectric layer. XRD was used to measure the diffraction intensity in order to observe the crystalline quality of pentacene thin film on PMMA and SiO2. AFM was also used to measure the grain size and roughness of pentacene grown on PMMA and SiO2 and subsequently deduce a match in surface free energy between pentacene and PMMA. The maximum saturation field-effect mobility was 0.241 cm2/V s. It was also found that the electric characteristics of OTFT with PMMA dielectric layer were beter than that of OTFT with SiO2 dielectric layer.
The excellent transfer characteristics of pentacene-based OTFTs with PMMA as dielectric layer were obtained: drain saturation current (3 μA at VGS = -50 V and VDS = -50 V), threshold voltage (VT = -11.5 V), on/off current ratio (7.7 × 104), and field-effect mobility (μsat = 0.48 cm2/Vs) were obtained by inserting the MoO3 buffer layer. The MoO3/pentacene interface was analyzed by XPS and found the C1s core level peak in MoO3/pentacene interface shifted to higher binding energy. For the energy barrier of 0.2 eV in Au/MoO3 interface, the carriers can sufficiently jump the energy barrier into MoO3 layer as VDS increases, and than efficiently inject into pentacene film. This is why the performance of OTFTs with MoO3 buffer layer can be enhanced as VDS is more than 1.7 V. Besides, the MoO3 buffer layer was also a protector against the penetration phenomena, which would cause interface dipole barrier. Therefore, excellent performance of pentacene-based thin film transistors will be achieved by inserting a MoO3 buffer layer.
Chapter 1
[1]D. F. Barbe, and C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals,” J. Phys. Chem. Solids, vol. 31, no. 12, pp. 2679-2687, December 1970.
[2]M. L. Petrova, and L. D. Rozenshtein, “Field effect in organic semiconductors,” Fiz. Tverd. Tela (Sov. Phys.-Solid State), vol.12, pp. 961, 1970.
[3]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys., vol. 54, pp. 3255-3259, June 1983.
[4]C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: a review of recent advances,” IBM J. RES. & DEV., vol. 45, no.1, pp. 11-27, January 2001.
[5]Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge University Press, New York, pp.11, 1998.
[6]K. Schleupen, P. Alt, P. Andry, S. Asaad, E. Colgan, and P. Fryer, Proceedings of the 18th International Display Research Conference, Asia Display ’98, pp. 187, 1998.
[7]W. Riess, H. Riel, T. Beierlein, W. Bru¨tting, P. Mu¨ller, and P. F. Seidler, “Influence of trapped and interfacial charges in organic multilayer light-emitting devices,” IBM J. Res. & Dev., vol. 45, pp. 77-88, January 2001.
[8]R. Friend, J. Burroughes, and T. Shimoda, “Polymer Diodes,” Phys. World (UK), vol. 12, pp. 35-40, June 1999.
[9]Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and Th. N. Jackson, “Pentacene-based organic thin film transistors,” IEEE Trans. Electron Devices, vol. 44, no. 8, pp. 1325-1331, August 1997.
[10]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, vol. 280, no. 5370, pp. 1741-1744, June 1998.
[11]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes,” Synth. Met., vol. 102, no. 1-3, pp. 857-860, June 1999.
[12]A. Salleo, M. L. Chabinyc, M. S. Yang, and R. A. Street, “Polymer thin-film transistors with chemically modified dielectric interfaces,” Appl. Phys. Lett., vol. 81, no. 23, pp. 4383-4385, December 2002.
[13]A. Wang, I. Kymissis, V. Bulović, and A. I. Akinwande, “Tunable threshold voltage and flatband voltage in pentacene field effect transistors,” Appl. Phys. Lett., vol. 89, no. 11, pp. 112109-112111, September 2006.
[14]S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, “Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nat. Mater., vol. 3, pp. 317-322, May 2004.
[15]K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” J. Appl. Phys., vol. 96, no. 11, pp. 6431-6438, December 2004.
[16]J. Takeya, T. Nishikawa, T. Takenobu, S. Kobayashi, Y. Iwasa, T. Mitani, C. Goldmann, C. Krellner, and B. Batlogg, “Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 21, pp. 5078-5080, November 2004.
[17]S. Scheinert, G. Paasch, M. Schrödner, H.-K. Roth, S. Sensfuß, and Th. Doll, “Subthreshold characteristics of field effect transistors based on poly(3 dodecylthiophene) and an organic insulator,” J. Appl. Phys., vol. 92, no. 1, pp. 330-337, July 2002.
[18]S. Scheinert, G. Paasch, and Th. Doll, “The influence of bulk traps on the subthreshold characteristics of an organic field effect transistor,” Synth. Met., vol. 139, no. 2, pp. 233-237, September 2003.
[19]T. Lindner, G. Paasch, and S. Scheinert, “Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors,” J. Mater. Res., vol. 19, no. 7, pp. 2014-2027, July 2004.
[20]K. P. Pernstich, D. Oberhoff, C. Goldmann, and B. Batlogg, “Modeling the water related trap state created in pentacene transistors,” Appl. Phys. Lett., vol. 89, no. 21, pp. 213509-213511, November 2006.
[21]S. Scheinert and G. Paasch, “Fabrication and analysis of polymer field-effect transistor,” Phys. Status Solidi A, vol. 201, no. 6, pp. 1263-1301, May 2004.
[22]D. Oberhoff, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, “Arbitrary Density of States in Organic Thin-Film Field-Effect Transistor Model and Application to Pentacene Devices,” IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 17-25, January 2007.
[23]G. Horowitz, “Organic Field-Effect Transistor,” Adv. Mater., vol. 10, no. 5, pp. 365-377, January 1998.
[24]C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin-Film Transistors for Large Area Electronics,” Adv. Mater., vol. 14, no. 2, pp. 99-117, January 2002.
[25]A. C. Mayer, A. Kazimirov, G. G. Malliaras, “Dynamics of Bimodal Growth in Pentacene Thin Films,” Phys. Rev. Lett., vol. 97, no. 10, pp. 105503-105506, September 2006.
[26]H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film,” Appl. Phys. Lett., vol. 88, no. 16, pp. 161918-161920, April 2006.
[27]H. L. Cheng, Y. S. Mai, W. Y. Chou, and L. R. Chang, “Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors,” Appl. Phys. Lett., vol. 90, no. 17, pp. 171926-171928, April 2007.
[28]Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol. 18, no. 12, pp. 606-608, December 1997.
[29]M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Appl. Phys. Lett., vol. 81, no. 2, pp. 268-270, July 2002.
[30]D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistor on inorganic dielectrics: Morphology, structural, properties, and electronic transport,” J. Appl. Phys., vol. 93, no. 1, pp. 347-355, January 2003.
[31]C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin-Film Transistors for Large Area Electronics,” Adv. Mater., vol. 14, no. 2, pp. 99-117, January 2002.
[32]C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, H. Klauk, T. N. Jackson, M. G Kane, J. Campi, F. P. Cuomo, B. K. Greening, “Fast organic circuits on flexible polymeric substrates,” Tech. Dig. - Int. Electron Devices Meet., pp. 619, 2000.
[33]C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Frand, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett., vol. 80, no. 6, pp. 1088-1090, February 2002.
[34]D. J. Gundlach, H. Klauk, C. D. Sheraw, C. C. Kuo, J. R. Huang, and T. N. Jackson, “High-mobility, low voltage organic thin film transistors,” Tech. Dig. - Int. Electron Devices Meet., p. 111, 1999.
[35]B. K. Crone, A. Dodabalapur, R. Sarpeshkar, R. W. Filas, Y. Y. Lin, Z. Bao, J. H. O’Neill, W. Li, and H. E. Katz, “Design and fabrication of organic complementary circuits,” J. Appl. Phys., vol. 89, no. 9, pp. 5125-5132, May 2001.
[36]H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. de Leeuw, “Active-Matrix Displays Driven by Solution-Processed Polymeric Transistors,” Adv. Mater., vol. 14, no. 17, pp. 1201-1204, August 2001.
[37]D. Knipp, R. A. Street, B. S. Krusor, and R. B. Apte, Proceedings of the Fall 2001 Materials Research Society Meeting, p. 553, 2001.
[38]J. H. Schőn and C. Kloc, “Fast organic electronic circuits based on ambipolar pentacene field-effect transistors,” Appl. Phys. Lett., vol. 79, no. 24, pp. 4043-4044, December 2001.
[39]Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol. 18, no. 12, pp. 606-608, December 1997.
[40]G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, “High-performance all-polymer integrated circuits,” Appl. Phys. Lett., vol. 77, no. 10, pp. 1487-1489, September 2000.
[41]P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett., vol. 78, no. 23, pp. 3592-3594, June 2001.
[42]J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A., vol. 98, no. 9, pp. 4835-4840, April 2001.
[43]H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, vol. 290, no. 5499, pp. 2123-2126, December 2000.
[44]T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits,” Adv. Mater., vol. 13, no. 21, pp. 1601-1605, October 2001.
[45]C. D. Sheraw, D. J. Gundlach, and T. N. Jackson, “Spin-On Polymer Gate Dielectric for High Performance Organic Thin Film Transistors,” Mater. Res. Soc. Symp. Proc., vol. 558, pp. 403, Spring 1999.
Chapter 2
[1]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys., vol. 54, no. 6, pp. 3255-3258, June 1983.
[2]A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., vol. 49, no.18, pp. 1210-1212, November 1986.
[3]J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors,” Nature, vol. 335, pp. 137-141, September 1988.
[4]C. Clarisse, M. T. Riou, M. Gauneau, and M. Le Contellec, “Field-effect transistor with diphthalocyanine thin film,” Electron. Lett., vol. 24, no. 674-675, May 1988.
[5]A. Assadi, C. Svensson, M. Willander, and O. Ingana¨s, “Field-effect mobility of poly(3-hexylthiophene),” Appl. Phys. Lett., vol. 53, no. 3, pp. 195-197, July 1988.
[6]G. Horowitz, X. Z. Peng, D. Fichou, and F. Garnier, “Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors,” Synth. Met., vol. 51, no. 1-3, pp. 419-424, September 1992.
[7]F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Dellofre, B. Servet, S. Ries, and P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” J. Amer. Chem. Soc., vol. 115, no. 19, pp. 8716-8721, September 1993.
[8]A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical characteristics,” Science, vol. 268, no. 5208, pp. 270-271, April 1995.
[9]Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, 54th Annual Device Research Conference Digest, p. 80, 1996.
[10]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Appl. Phys. Lett., vol. 67, no. 1, pp. 121-123, July 1995.
[11]H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siergist, W. Li, Y.-Y. Lin, and A. Dodabalapur, “A soluble and air-stable organic semiconductor with high electron mobility,” Nature, vol. 404, pp. 478-481, March 2000.
[12]Colin Reese, Mark Roberts, Mang-mang Ling, and Zhenan Bao, “Organic thin film transistors,” Materials today, vol. 7, no. 9, pp. 20-27, September 2004.
[13]T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, “High performance Organic thin film transistor,” Mater. Res. Soc. Symp. Proc., vol. 771, pp. L6.5.1, 2003.
[14]Y.-Y Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson , “Pentacene-based organic thin-film transistors,” IEEE Trans. Electron Dev., vol. 44, no. 8, pp. 1325-1331, August 1997.
[15]H. E. Katz, “Organic molecular solids as thin film transistor semiconductor,” J. Mater. Chem., vol. 7, no. 3, pp. 369-376, July 1997.
[16]S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon and, W. K. Kim, “High-performance polymer tfts printed on a plastic substrate,” IEEE Trans. Electron Dev., vol. 49, no. 11, pp. 2008-2015, November 2002.
[17]Z. L. Li, S. C. Yang, H. F. Meng, Y. S. Chen, Y. Z. Yang, C. H. Liu, S. F. Horng, C. S. Hsu, L. C. Chen, J. P. Hu, and R. H. Lee, “Patterning-free integration of polymer light-emitting diode and polymer transistor,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3558-3560, May 2004.
[18]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, vol. 280, no. 5370, pp. 1741-1744, June 1998.
[19]Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Appl. Phys. Lett., vol. 69, no. 26, pp. 4108-4110, December 1996.
[20]A. Babel, and S. A. Jenekhe, “Electron Transport in Thin-Film Transistor from n-Type Conjugated Polymer,” Adv. Mater., vol. 14, no. 5, pp. 371-374, February 2002.
[21]A. Babel, and S. A. Jenekhe, “High Electron Mobility in Ladder Polymer Field-Effect Transistors,” J. Am. Chem. Soc., vol. 125, no. 45, pp. 13656-13657, October 2003.
[22]Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” J. Am. Chem. Soc., vol. 120, no. 1, pp. 207-208, January 1998.
[23]Y.-Y Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson , “Pentacene-based organic thin-film transistors,” IEEE Trans. Electron Dev., vol. 44, no. 8, pp. 1325-1331, August 1997.
[24]G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater., vol. 10, no. 5, pp. 365-377, January 1998.
[25]D. J. Gundlach, L. Jia ,T. N. Jackson, “Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes,” IEEE Electron Device Lett., vol. 22, no. 12, pp. 571-573, December 2001.
[26]L. Torsi, N. Cioffi, C. Di Franco, L. Sabbatini, P. G. Zambonin, and T. Bleve-Zacheo, “Organic thin film transistor: from active materials to novel applications,” Solid-State Electronics, vol. 45, no. 8, pp. 1479-1485, August 2001.
Chapter 3
[1]D. Sadrid, “Scanning Force Microscopy.” Oxford Press, Oxford publishing company, ch3 1990.
[2]Dawn A. Bonnell, “Scanning Probe Microscopy and Spectroscopy”, Wiley-VCH., 16 (2001)
[3]Y. Martin, C.C. Williams and H. K. Wickramadinghe, “Atomic force microscope-force mapping and profiling on a sub 100-Å scale,” J. Appl. Phys., vol. 61, no. 10, pp. 4723-4729, May 1987.
[4]F. J. Giessibl, Ch. Gerber, and G. Binnig, “A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum,” J. Vac. Sci. Technol. B, vol. 9, no. 2, pp. 984, March 1991.
[5]P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma, “Tapping mode atomic force microscopy in liquids,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1738-1740, March 1994.
Chapter 4
[1]G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors,” J. Appl. Phys., vol. 87, no. 9, pp. 4456-4463, May 2000.
[2]P. J. Peerce and A. J. Bard, “Polymer films on electrodes: Part III. Digital simulation model for cyclic voltammetry of electroactive polymer film and electrochemistry of poly(vinylferrocene) on platinum,” J. Electroanalytical Chem., vol. 114, no. 1, pp. 89-115, November 1980.
[3]J. L. Feijoo, A. J. Muller and J. R. Acosta, “Miscibility study of low molecular weight polystyrene/styrene-methyl methacrylate random copolymer blend using DSC,” J. Mater. Sci. Lett., vol. 5, no. 11, pp. 1193-1194, November 1986.
[4]S. Y. Kim, J. L. Lee, K. B. Kim, and Y. H. Tak, “Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes,” J. Appl. Phys., vol. 95, no. 5, pp. 2560-2563, March 2004.
[5]C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma: An effective method to improve the efficiency, brightness, and reliability of organic light emitting diodes,” Appl. Phys. Lett., vol. 70, no. 11, pp. 1348-1350, March 1997.
[6]R. Hosemann, and S. N. Bagchi, “Direct Analysis of Diffraction by Matter,” North-Holland, Amsterdam, 1962.
[7]R. Hosemann, A. M. Hindeleh, “Structure of crystalline and paracrystalline condensed matter,” J. Macromol. Sci. Phys. vol. B34, no. 4, pp. 327-356, November 1995.
[8]L. E. Alexander, X-ray Diffraction Methods in Polymer Science, Wiley, New York, and references therein, 1969.
[9]H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, and X. W. Liang, “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films,” Adv. Funct. Mater., vol. 17, no. 17, pp. 3639-3649, October 2007.
Chapter 5
[1]J. R. S, H. Antoniadis, M. Husechen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, “Organic Electroluminescent Devices,” Science, vol. 273, no. 5277, pp. 884-888, August 1996.
[2]C. O. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: a review of recent advances,” IBM J. Res. Dev., vol. 45, no. 1, pp. 11-27, January 2001.
[3]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Appl. Phys. Lett., vol. 63, no. 10, pp. 1372-1374, September 1992.
[4]P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., vol. 79, no. 1, pp. 126-128, July 2001.
[5]Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol. 18, no. 12, pp. 606-608, December 1997.
[6]M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Appl. Phys. Lett., vol. 81, no. 2, pp. 268-270, July 2002.
[7]D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport,” J. Appl. Phys., vol. 93, no. 1, pp. 347-355 ,January 2003.
[8]W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, “Effect of surface free energy in gate dielectric in pentacene thin-film transistors,” Appl. Phys. Lett., vol. 89, no. 11, pp. 112126-112128, September 2006.
[9]T. Minakata, H. Imai, M. Ozaki, and K. Saco, “Structural studies on highly ordered and highly conductive thin films of pentacene,” J. Appl. Phys., vol. 72, no. 11, pp. 5220-5225, December 1996.
[10]C. D. Kimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” J. Appl. Phys., vol. 80, no. 80, pp. 2501-2508, August 1996.
[11]L. E. Alexander, X-Ray Diffraction Methods in Polymer Science (Wiley, New York, 1969), p. 429.
[12]Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, “Low-voltage and high-field-effect mobility organic transistors with a polymer insulator,” Appl. Phys. Lett., vol. 88, no. 7, pp. 072101-072103, February 2006.
[13]G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors,” Appl. Phys. Lett., vol. 87, no. 24, pp. 243512-243514, December 2005.
[14]S. Uemura, A. Komukai, R. Sakaida, T. Kawai, M. Yoshida, S. Hoshino, T. Kodzasa, and T. Kamata, “The organic FET with poly(peptide) derivatives and poly(methyl-methacrylate) gate dielectric,” Synth. Met., vol. 153, no. 1-3, pp. 405-408, September 2005.
[15]F. De Angelis, S. Cipolloni, L. Mariucci, and G. Fortunato, “High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer,” Appl. Phys. Lett., vol. 86, no. 20, pp. 203505-203507, May 2005.
[16]H. L. Cheng, Y. S. Mai, W. Y. Chou, and L. R. Chang, “Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors,” Appl. Phys. Lette., vol. 90, no. 17, pp. 171926-171928, April 2007.
Chapter 6
[1]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, vol. 280, no. 5370, pp. 1741-1744, June 1998.
[2]Z. L. Li, S. C. Yang, H. F. Meng, Y. S. Chen, Y. Z. Yang, C. H. Liu, S. H. Horng, C. S. Hsu, L. C. Chen, J. P. Hu, and R. H. Lee, “Patterning-free integration of polymer light-emitting diode and polymer transistor,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3558-3560, May 2004.
[3]S. F. Nelson, Y.-Y. Lin, D. J. Glundlach, T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors,” Appl. Phys. Lett., vol. 72, no. 15, pp. 1854-1856, April 1998.
[4]F. Garnier, G. Horowitz, X. Z. Peng, and D. Fichon, “Structural basis for high carrier mobility in conjugated oligomers,” Synth. Met., vol. 45, no. 2, pp. 163-171, November 1991.
[5]K. Fujita, T. Yasuda, and T. Tsutsui, “Flexible organic field-effect transistors fabricated by the electrode-peeling transfer with an assist of self-assembled monolayer,” Appl. Phys. Lett., vol. 82, no. 24, pp. 4373-4375, June 2003.
[6]K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, J. A. Rogers, and R. G. Nuzzo, “Large-Area, Selective Transfer of Microstructured Silicon : A Printing- Based Approach to High-Performance Thin-Film Transistors Supported on Flexible Substrates,” Adv. Mater., (Weinheim, Ger.) vol. 17, no. 19, pp. 2332-2336, August 2005.
[7]S. Pyo, H. Son, K. Y. Choi, M. H. Yi, and S. K. Hong, “Low-temperature processable inherently photosensitive polyimide as a gate insulator for organic thin-film transistors,” Appl. Phys. Lett., vol. 86, no. 13, pp. 133508-133510, March 2005.
[8]T. S. Huang, Y. K. Su, and P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer,” Appl. Phys. Lett., vol. 91, no. 9, pp. 092116-092118, August 2007.
[9]F. De Angelis, S. Cipolloni, L. Mariucci, and G. Fortunato, “High-field-effect-mobility pentacene thin-film transistors with polymethylmetacrylate buffer layer,” Appl. Phys.Lett., vol. 86, no. 20, pp. 203505-203507, May 2005.
[10]D. J. Gundlach, L. L. Jia, and T. N. Jackson, “Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes,” IEEE Electron Device Lett., vol. 22, no. 12, pp. 571-573, December 2001.
[11]C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode,” Appl. Phys. Lett., vol. 87, no. 19, pp. 193508-193510, November 2005.
[12]F. C. Chen, Y. S. Lin, T. H. Chen, and L. J. Kung, “Efficient Hole-Injection in Highly Transparent Organic Thin-Film Transistor,” Electrochemical and Solid-State Lett., vol. 10 no. 6, pp. H186-H188, April 2007.
[13]T. Minari, Y. Miyata, M. Terayama, T. Nemoto, T. Nishinaga, K. Komatsu, and S. Isoda, “Alkyl chain length dependent mobility of organic field-effect transistors based on thienyl-furan oligomers determined by the transfer line method,” Appl. Phys. Lett., vol. 88 no. 8, pp. 083514-083516, February 2006.
[14]I. G. Hill, A. J. Mäkinen, and Z. H. Kafafi, “Initial stages of metal/organic semiconductor interface formation,” J. Appl. Phys., vol. 88, no. 2, pp. 889-895, July 2000.
[15]N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metal,” Appl. Phys. Lett., vol. 80, no. 23, pp. 4384-4386, June 2002.
[16]R. S. Muller, T. I. Kamins, Device Electronics for Integrated Circuits, 3rd ed.,Chap. 3, John Wiley & Sons, New York 2003.
[17]J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, and K. Cho, “Effects of metal penetration into organic semiconductors on the electrical properties of organic thin film transistors,” Appl. Phys. Lett., vol. 89, no. 13, pp. 132101-132103, September 2006.
[18]S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
[19]H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy Level Alignment and interfacial Electronic Structure at Organic/Organic interface,” Adv. Mater., vol. 8, no. 8, pp. 605-625, June 1999.
[20]L. Diao, C. D. Frisbie, D. D. Schroepfer, and P. P. Ruden, “Electrical characterization of metal/pentacene contacts,” J. Appl. Phys., vol. 101, no. 1, pp. 014510-014517, January 2007.