簡易檢索 / 詳目顯示

研究生: 孫銘鍵
Sun, Ming-Jian
論文名稱: 應用兩階段式分類策略於區別一般健康者、音樂家和精神分裂患者之聲音刺激腦電位
Differentiation of Auditory Event-Related Potentials from Normal Subjects, Musicians and Patients with Schizophrenia by Two-Stage Hierarchical Classification Strategy
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 60
中文關鍵詞: 精神分裂症聽覺事件相關電位階段式分類聽覺感知
外文關鍵詞: Schizophrenia, Auditory event-related potential (AEP), Hierarchical classification, Auditory perception
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精神分裂症(Schizophrenia)是一種嚴重且慢性的腦部疾病,影響全世界大約1%的人口,且好發於年輕的成年人口。常見的症狀包含幻覺、妄想、社交能力喪失和缺乏情緒起伏等。目前精神分裂症的診斷方式主要是基於觀察患者長達六個月的行為紀錄及其心理精神狀態評估(DSM)。過去的研究顯示聽覺感知已被用來檢驗神經系統理論和發展評估疾病系統,例如音樂家的神經可塑性和精神分裂症患者對於聽覺處理的異常。在過去的研究中,我們發現一般健康者、音樂家和精神分裂患者在大腦聽覺事件相關電位有明顯的差異。因此,本篇論文的目的為透過客觀的電生理資訊來進行一般健康者、音樂家和精神分裂患者的分類。本研究所建立的分類策略不只可以建立一個有效且客觀的分類系統來輔助診斷精神分裂症患者,也能用來區分一般人和聽覺感知特化的音樂家。
    本研究的受測者分為三個族群:十二位受過專業訓練的音樂家、十二位接受治療中的精神分裂患者和十二位一般健康者。在聽覺事件相關電位的實驗中,隨機撥放三種和弦刺激與兩種音程刺激,藉由觀察大腦事件相關電位N1和P2的統計結果,選出有統計差異的特徵,並結合兩階段式分類策略選出最佳的特徵組合。分類結果顯示,當在第一階段先分出精神分裂患者,然後在第二階段分出音樂家和一般健康者,最好的整體準確率可達到91.67%。在精神分裂症的分類上,可達到97.22%的準確率;在音樂家的分類上,可達到91.67%的準確率。因此本篇論文提出的分類策略,不只可以正確分類精神分裂症患者,也可以正確分類音樂家。本研究利用統計方法選取有鑑別度的特徵,並且搭配兩階段式策略來分類聽覺感知程度不一樣的三個族群。除此之外,也提供一個有高準確率、有效且客觀的系統可做為臨床上的應用來輔助診斷精神分裂症患者。

    Schizophrenia is a severe and chronic brain disorder that affects about 1% population worldwide and it typically occurs in young adulthood. Common symptoms include hallucinations, delusions, social withdrawal, reduced emotional expression, etc. Currently, diagnosis of schizophrenia is based on observing the patient's behavior and reported experiences for 6 months or more (Diagnostic and Statistical Manual of Mental Disorders, DSM). Past studies showed that auditory perception had long been used to test theories for neural system or develop assessment system for illness, such as neuroplasticity in musician’s brain and auditory processing deficits in schizophrenia patients. In previous studies, we found that difference in auditory event-related potentials (AEP) existed among normal subjects, musicians, and patients with schizophrenia. Therefore, the aim of this study is to classify normal subjects, musicians, and patients with schizophrenia by analyzing objective electrophysiological information. This study constructs a classification strategy which can not only develop an effective and objective classification system to help diagnosis of schizophrenia, but also distinguish musicians who have specialized auditory perception from normal people.
    In this thesis, the auditory event-related potentials experiments were recorded from 12 well-trained musicians, 12 medicated schizophrenia patients and 12 normal subjects. The stimuli was presented randomly by three kinds of chord stimuli (major, diminish and atonal) and two kinds of interval stimuli (perfect fifth and tritone), by observing the statistical results of AEPs in N1 and P2 amplitude of each stimuli type in groups and selected which had statistical difference as features, and then combined with two-stage strategy to select best feature combinations for classification. Results show that when firstly separating schizophrenia patients from the others in stage one, and then separating musicians and normal subjects in stage two, the best overall accuracy can reach 91.67%. The accuracy for schizophrenia classification can achieve 97.22%; the accuracy for musician classification can achieve 91.67%. Hence, this thesis proposed a classification strategy which can not only correctly classify schizophrenia patients but also correctly classify musicians. Finally, this study classified three groups who had distinct levels of auditory perception by using discriminating features and two-stage hierarchical strategy. Furthermore, this also provided a high accuracy, effective and objective classification system for clinical utility to help diagnosis of schizophrenia.

    摘要 III Abstract V Contents VIII List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Research Background 1 1.1.1 Diagnosis of Schizophrenia 1 1.1.2 The AEP Difference in Normal, Musician and Schizophrenia 3 1.1.3 Related Researches 5 1.2 Research Motivation 7 1.3 Research Goal 7 1.4 Thesis Overview 8 Chapter 2 Material and Method 9 2.1 Data Collection 9 2.1.1 Environment of Human Music-Perception Experiment 9 2.1.2 Subjects 11 2.1.3 Stimuli 14 2.1.4 ERPs Experiment 16 2.1.5 EEG Recordings and Data Analysis 17 2.2 Feature Screening 18 2.3 Classification Strategy 30 2.4 Classifier and Validation Method 35 2.4.1 Classifier 35 2.4.2 Validation Method 36 Chapter 3 Results 37 3.1 Classifier Performance 37 3.2 Performance of Classification 38 3.2.1 Classification Performance of Hierarchical Classification 38 3.2.2 Classification Performance of Multi-class Classification 43 Chapter 4 Discussion 45 4.1 Comparison of Classification Accuracy 46 4.2 Significant Patterns 49 4.3 Limitations 52 Chapter 5 Conclusion 53 References 55 Appendix I – PANSS 60

    Amunts, K., Schlaug, G., Jäncke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K., "Motor cortex and hand motor skills: Structural compliance in the human brain," Human brain mapping, vol. 5, pp. 206-215, 1997.
    Andreasen, N. C., "Symptoms, signs, and diagnosis of schizophrenia," The Lancet, vol. 346, pp. 477-481, 1995.
    Bassett, D. S., Nelson, B. G., Mueller, B. A., Camchong, J., & Lim, K. O., "Altered resting state complexity in schizophrenia," Neuroimage, vol. 59, pp. 2196-2207, 2012.
    Berkowitz, A. L., & Ansari, D., "Generation of novel motor sequences: the neural correlates of musical improvisation," Neuroimage, vol. 41, pp. 535-543, 2008.
    Boutros, N. N., Korzyuko, O., Oliwa, G., Feingold, A., Campbell, D., McClain-Furmanski, D., . . . Jansen, B. H., "Morphological and latency abnormalities of the mid-latency auditory evoked responses in schizophrenia: a preliminary report," Schizophrenia research, vol. 70, pp. 303-313, 2004.
    Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A., & Bell, M., "Sensory gating deficits during the mid-latency phase of information processing in medicated schizophrenia patients," Psychiatry research, vol. 126, pp. 203-215, 2004.
    Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., & Kiehl, K. A., "Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder," Human brain mapping, vol. 29, pp. 1265-1275, 2008.
    Chen, W.-H., "Perceptive Processing of Musical Consonance and Sound Complexity among Musicians, Non-musicians and Patients with Schizophrenia: An Event-related Potential and Behavioral Study," National Cheng Kung University Institute of Computer Science and Information Engineering, 2010.
    Chen, Y.-T., "Hemispheric Differences in the Auditory Event-Related Potential Elicited by Chord and Interval Stimuli: A Comparison among Musicians, Patients with Schizophrenia and Normal Subjects," National Cheng Kung University Institute of Computer Science and Information Engineering, 2011.
    Chun, J., Karam, Z., Marzinzik, F., Kamali, M., O'Donnell, L., Tso, I., . . . Deldin, P., "Can P300 distinguish among schizophrenia, schizoaffective and bipolar I disorders? An ERP study of response inhibition," Schizophrenia research, vol. 151, pp. 175-184, 2013.
    Clunas, N. J., & Ward, P. B., "Auditory recovery cycle dysfunction in schizophrenia: a study using event-related potentials," Psychiatry research, vol. 136, pp. 17-25, 2005.
    Davalos, D. B., Rojas, D. C., & Tregellas, J. R., "Temporal processing in schizophrenia: Effects of task-difficulty on behavioral discrimination and neuronal responses," Schizophrenia research, vol. 127, pp. 123-130, 2011.
    Du, W., Calhoun, V. D., Li, H., Ma, S., Eichele, T., Kiehl, K. A., . . . Adali, T., "High classification accuracy for schizophrenia with rest and task FMRI data," Frontiers in human Neuroscience, vol. 6, p. 145, 2012.
    Ferrarelli, F., Sarasso, S., Guller, Y., Riedner, B. A., Peterson, M. J., Bellesi, M., . . . Tononi, G., "Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia," Archives of general psychiatry, vol. 69, pp. 766-774, 2012.
    Fisher, R. A., "The use of multiple measurements in taxonomic problems," Annals of eugenics, vol. 7, pp. 179-188, 1936.
    Gallinat, J., Mulert, C., Bajbouj, M., Herrmann, W. M., Schunter, J., Senkowski, D., . . . Winterer, G., "Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia," Neuroimage, vol. 17, pp. 110-127, 2002.
    Garcia-Larrea, L., Lukaszewicz, A. C., & Mauguiere, F., "Revisiting the oddball paradigm. Non-target vs neutral stimuli and the evaluation of ERP attentional effects," Neuropsychologia, vol. 30, pp. 723-741, 1992.
    Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W., "Electrical signs of selective attention in the human brain," Science, vol. 182, p. 177, 1973.
    Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G., "Cerebellar volume of musicians," Cerebral Cortex, vol. 13, pp. 943-949, 2003.
    Iakovides, S. A., Iliadou, V. T., Bizeli, V. T., Kaprinis, S. G., Fountoulakis, K. N., & Kaprinis, G. S., "Psychophysiology and psychoacoustics of music: Perception of complex sound in normal subjects and psychiatric patients," Annals of General Psychiatry, vol. 3, p. 6, 2004.
    Itoh, K., Suwazono, S., & Nakada, T., "Cortical processing of musical consonance: an evoked potential study," Neuroreport, vol. 14, pp. 2303-2306, 2003.
    Iyer, D., & Zouridakis, G. Single-trial analysis of the auditory N100 improves separation of normal and schizophrenia subjects. Paper presented at the Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, 2008.
    Jablensky, A., "Schizophrenia: recent epidemiologic issues," Epidemiologic Reviews, vol. 17, p. 10, 1995.
    Jafri, M. J., & Calhoun, V. D. Functional classification of schizophrenia using feed forward neural networks. Paper presented at the Conf Proc IEEE Eng Med Biol Soc, 2006.
    Johansson, B. B., "Music and brain plasticity," EUROPEAN REVIEW-CHICHESTER-, vol. 14, p. 49, 2006.
    Kay, S. R., Flszbein, A., & Opfer, L. A., "The positive and negative syndrome scale (PANSS) for schizophrenia," Schizophrenia bulletin, vol. 13, p. 261, 1987.
    Koelsch, S., "Toward a neural basis of music perception–a review and updated model," Frontiers in Psychology, vol. 2, 2011.
    Kung, C.-C., Hsieh, T.-H., Liou, J.-Y., Lin, K.-J., Shaw, F.-Z., & Liang, S.-F., "Musicians and non-musicians’ different reliance of features in consonance perception: A behavioral and ERP study," Clinical Neurophysiology, vol. 125, pp. 971-978, 2014.
    Münte, T. F., Altenmüller, E., & Jäncke, L., "The musician's brain as a model of neuroplasticity," Nature Reviews Neuroscience, vol. 3, pp. 473-478, 2002.
    Makeig, S. Affective versus analytic perception of musical intervals Music, mind, and brain (pp. 227-250): Springer, 1982.
    Minati, L., Rosazza, C., D'Incerti, L., Pietrocini, E., Valentini, L., Scaioli, V., . . . Bruzzone, M. G., "Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians," Neuroreport, vol. 20, pp. 87-92, 2009.
    Neuhaus, A. H., Popescu, F. C., Bates, J. A., Goldberg, T. E., & Malhotra, A. K., "Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms," European archives of psychiatry and clinical neuroscience, vol. 263, pp. 241-247, 2013.
    Neukirch, M., Hegerl, U., Kotitz, R., Dorn, H., Gallinat, U., & Herrmann, W., "Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components," Neuropsychobiology, vol. 45, pp. 41-48, 2000.
    O'donnell, B., Vohs, J., Hetrick, W., Carroll, C., & Shekhar, A., "Auditory event-related potential abnormalities in bipolar disorder and schizophrenia," International Journal of Psychophysiology, vol. 53, pp. 45-55, 2004.
    Panksepp, J., & Bernatzky, G., "Emotional sounds and the brain: the neuro-affective foundations of musical appreciation," Behavioural processes, vol. 60, pp. 133-155, 2002.
    Pantev, C., & Herholz, S. C., "Plasticity of the human auditory cortex related to musical training," Neuroscience & Biobehavioral Reviews, vol. 35, pp. 2140-2154, 2011.
    Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B., "Timbre-specific enhancement of auditory cortical representations in musicians," Neuroreport, vol. 12, pp. 169-174, 2001.
    Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., & Lütkenhöner, B., "Short-term plasticity of the human auditory cortex," Brain research, vol. 842, pp. 192-199, 1999.
    Rodrigues, A. C., Loureiro, M. A., & Caramelli, P., "Musical training, neuroplasticity and cognition," Dement. Neuropsychol, vol. 4, pp. 277-286, 2010.
    Salisbury, D. F., Collins, K., & McCarley, R. W., "Reductions in the N1 and P2 Auditory Event-Related Potentials in First-Hospitalized and Chronic Schizophrenia," Schizophrenia bulletin, vol. 36, pp. 991-1000, 2010.
    Salisbury, D. F., Shenton, M. E., Sherwood, A. R., Fischer, I. A., Yurgelun-Todd, D. A., Tohen, M., & McCarley, R. W., "First-episode schizophrenic psychosis differs from first-episode affective psychosis and controls in P300 amplitude over left temporal lobe," Archives of general psychiatry, vol. 55, pp. 173-180, 1998.
    Sartorius, N., Jablensky, A., Korten, A., Ernberg, G., Anker, M., Cooper, J. E., & Day, R., "Early manifestations and first-contact incidence of schizophrenia in different cultures: a preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders," Psychological medicine, vol. 16, pp. 909-928, 1986.
    Schellenberg, E. G., & Trehub, S. E., "Frequency ratios and the perception of tone patterns," Psychonomic Bulletin & Review, vol. 1, pp. 191-201, 1994.
    Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A., "Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians," Nature neuroscience, vol. 5, pp. 688-694, 2002.
    Seppänen, M., Hämäläinen, J., Pesonen, A.-K., & Tervaniemi, M., "Music training enhances rapid neural plasticity of N1 and P2 source activation for unattended sounds," Frontiers in human Neuroscience, vol. 6, 2012.
    Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E., "Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians," The Journal of neuroscience, vol. 23, pp. 5545-5552, 2003.
    Shahin, A., Roberts, L. E., Pantev, C., Trainor, L. J., & Ross, B., "Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds," Neuroreport, vol. 16, pp. 1781-1785, 2005.
    Shen, H., Wang, L., Liu, Y., & Hu, D., "Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI," Neuroimage, vol. 49, pp. 3110-3121, 2010.
    Shi, F., Liu, Y., Jiang, T., Zhou, Y., Zhu, W., Jiang, J., . . . Liu, Z. Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007 (pp. 136-143): Springer, 2007.
    Sui, J., Adali, T., Pearlson, G. D., & Calhoun, V. D., "An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques," Neuroimage, vol. 46, pp. 73-86, 2009.
    Tang, Y., Wang, L., Cao, F., & Tan, L., "Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis," Biomed Eng Online, vol. 11, p. 50, 2012.
    Todd, J., Michie, P. T., Budd, T. W., Rock, D., & Jablensky, A. V., "Auditory sensory memory in schizophrenia: inadequate trace formation?," Psychiatry research, vol. 96, pp. 99-115, 2000.
    Tramo, M. J., Shah, G. D., & Braida, L. D., "Functional role of auditory cortex in frequency processing and pitch perception," Journal of neurophysiology, vol. 87, p. 122, 2002.
    Umbricht, D., Koller, R., Schmid, L., Skrabo, A., Grübel, C., Huber, T., & Stassen, H., "How specific are deficits in mismatch negativity generation to schizophrenia?," Biological psychiatry, vol. 53, pp. 1120-1131, 2003.
    Van Der Stelt, O., & Belger, A., "Application of electroencephalography to the study of cognitive and brain functions in schizophrenia," Schizophrenia bulletin, vol. 33, pp. 955-970, 2007.
    Venkataraman, A., Kubicki, M., Westin, C.-F., & Golland, P. Robust feature selection in resting-state fmri connectivity based on population studies. Paper presented at the Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, 2010.
    Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A., "Resting state EEG abnormalities in autism spectrum disorders," Journal of neurodevelopmental disorders, vol. 5, p. 24, 2013.
    Winterer, G., Ziller, M., Dorn, H., Frick, K., Mulert, C., Wuebben, Y., & Herrmann, W., "Frontal dysfunction in schizophrenia–a new electrophysiological classifier for research and clinical applications," European archives of psychiatry and clinical neuroscience, vol. 250, pp. 207-214, 2000.
    Wu, K.-Y., Chao, C.-W., Hung, C.-I., Chen, W.-H., Chen, Y.-T., & Liang, S.-F., "Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study," BMC psychiatry, vol. 13, p. 158, 2013.

    無法下載圖示 校內:2017-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE