| 研究生: |
陳星妤 Chen, Hsing-Yu |
|---|---|
| 論文名稱: |
目標物大小與距離對中風患者手臂-軀幹協調之影響 Effects of Target Size and Distance on Arm-Trunk Coordination in Patients with Stroke |
| 指導教授: |
馬慧英
Ma, Hui-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 職能治療學系 Department of Occupational Therapy |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 手臂-軀幹協調 、目標物大小 、目標物距離 、運動學分析 、伸手取物 |
| 外文關鍵詞: | Arm-trunk coordination, target size, target distance, kinematics analysis, reaching |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
伸手取物動作是日常生活活動中最常見且必要的動作,而中風病人因上肢動作缺損以及手臂-軀幹協調能力較差,使用過多的身體代償,限制患側手的進步。因此臨床工作者除了注意上肢功能恢復之外,也應思考如何減少中風患者產生不適當的身體代償。本研究目的為探討目標物大小與距離對中風患者伸手取物動作中手臂-軀幹協調之影響。
本研究在台南地區招募22位中風患者以及23位年齡、性別配對之健康成人。本研究為重複測量研究設計,情境因子有目標物大小(大目標物直徑7公分以及小目標物直徑3.5公分)與目標物距離(125%及100%手臂長位置)。目標物為3D列印之杯狀物品,高度、重量相同。中風患者以及健康成人需要分別以患側手及對照手執行伸手取物之四情境任務:大且近、大且遠、小且近、小且遠,以比較參與者之間以及情境任務間之手臂-軀幹協調表現。上肢與軀幹之動作表現將以運動學分析,運動學參數包含:上肢動作參數、軀幹動作參數、以及手臂-軀幹關聯性參數,並利用三維變異數分析檢驗研究假設,比較兩種大小、兩種距離對於兩組受試者伸手動作表現的影響,另外也會計算效應值(r)了解速度、距離對各個參數的影響程度。
目標物大小會影響手肘最大伸展角度、上肢尖峰速度、加速度佔總動作時間百分比、軀幹位移、軀幹尖峰速度、動作起始時間差與動作中期軀幹參與之斜率比值等參數,目標物越大手肘最大伸展角度、上肢尖峰速度、軀幹位移、軀幹尖峰速度越大,加速度佔總動作時間百分比越小。動作起始時間差與動作中期軀幹參與之斜率比值受到目標物大小與組別的二因子交互作用影響,代表目標物大小對兩組的動作效應有所不同,動作起始時間差的目標物大小影響之效果量在中風患者組的較大,動作中期軀幹參與之斜率比值則是健康成人組的目標物大小影響效果量較大。
目標物距離會影響動作單元以外的所有參數,目標物距離越遠,會有較大的手肘最大伸展角度、上肢尖峰速度、軀幹位移、軀幹尖峰速度,較小的標準化手臂動作時間、加速度佔總動作時間百分比、較為同時的動作起始與結束,以及較小的動作初期與中期軀幹參與之斜率比值。其中手肘最大伸展角度、上肢尖峰速度、標準化手臂動作時間、軀幹尖峰速度與動作中期軀幹參與之斜率比值受到目標物距離與組別的二因子交互作用影響,表示目標物距離對兩組的效應相似但程度不同。
目標物大小對兩組的上肢路徑位移之比值、標準化軀幹動作時間以及動作末期軀幹參與之斜率比值等變項的效應會隨著距離的不同而有所不同。
目標物大小與距離皆會影響伸手動作中上肢與軀幹的動作表現與協調,且目標物距離效應較目標物大小來得大。對中風患者而言,考量到目標物大小與距離對各個參數有不同程度的影響,因此在設計治療活動時,應以主要治療目標來選擇適當的大小與距離目標物作為活動難易度的分級與調整。
The purpose of this study was to investigate the effects of target size and distance on arm-trunk coordination in patients with stroke. This study used a repeated-measures design and kinematic analysis. 22 patients with stroke and 23 age-gender-matched healthy adults were required to use their affected/ corresponding hands to reach for cups that were varied with size (7cm versus 3.5cm in diameter) and distance (100% versus 125% of arm length). The height and weight of the large and small cups were kept the same. The movement kinematics was collected by a three-dimensional ultrasonic motion tracking system, Zebris. Our results revealed that target size significantly affected arm (elbow extension, peak velocity, percentage of total movement time represented by the acceleration phase), trunk (displacement, peak velocity) movements and arm-trunk coordination (onset interval, and mid phase of trunk contribution slope) in people with stroke and healthy adults. Target distance significantly affected almost all the parameters. The results of this study may provide direction for therapists to setup therapeutic task in motor rehabilitation for stroke.
Adam, J. J. (1992). The effects of objectives and constraints on motor control strategy in reciprocal aiming movements. Journal of motor behavior, 24(2), 173-185.
Brenner, E., & Smeets, J. B. (1996). Size illusion influences how we lift but not how we grasp an object. Experimental brain research, 111(3), 473-476.
Brewer, L., Horgan, F., Hickey, A., & Williams, D. (2012). Stroke rehabilitation: recent advances and future therapies. QJM, hcs174.
Cirstea, M., & Levin, M. F. (2000). Compensatory strategies for reaching in stroke. Brain, 123(5), 940-953.
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6), 381.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research, 12(3), 189-198.
Gordon, A., Forssberg, H., Johansson, R., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental brain research, 83(3), 477-482.
Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. Attention and performance IX, 9, 153-168.
Jeannerod, M. (1984). The timing of natural prehension movements. Journal of motor behavior, 16(3), 235-254.
Jeannerod, M. (1999). Visuomotor channels: their integration in goal-directed prehension. Human Movement Science, 18(2), 201-218.
Kaminski, T., Bock, C., & Gentile, A. (1995). The coordination between trunk and arm motion during pointing movements. Experimental brain research, 106(3), 457-466.
Kudoh, N., Hattori, M., Numata, N., & Maruyama, K. (1997). An analysis of spatiotemporal variability during prehension movements: effects of object size and distance. Experimental brain research, 117(3), 457-464.
Levin, M. F., Michaelsen, S. M., Cirstea, C. M., & Roby-Brami, A. (2002). Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Experimental brain research, 143(2), 171-180.
Li, F., Wu, Y., & Li, X. (2014). Test-retest reliability and inter-rater reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in hemiplegic patients with stroke. European journal of physical and rehabilitation medicine, 50(1), 9-15.
Lin, J. H., Hsu, M. J., Sheu, C. F., Wu, T. S., Lin, R. T., Chen, C. H., & Hsieh, C. L. (2009). Psychometric comparisons of 4 measures for assessing upper-extremity function in people with stroke. Phys Ther, 89(8), 840-850.
Liu, H. C., Teng, E. L., Lin, K. N., Hsu, T. C., Guo, N. W., Chou, P., . . . Chiang, B. N. (1994). Performance on a dementia screening test in relation to demographic variables: study of 5297 community residents in Taiwan. Archives of Neurology, 51(9), 910-915.
Liu, W., Waller, S. M., Kepple, T., & Whitall, J. (2013). Compensatory arm reaching strategies after stroke: induced position analysis. Journal of rehabilitation research and development, 50(1), 71.
Mandon, L., Boudarham, J., Robertson, J., Bensmail, D., Roche, N., & Roby-Brami, A. (2015). Faster Reaching in Chronic Spastic Stroke Patients Comes at the Expense of Arm-Trunk Coordination. Neurorehabilitation and neural repair, 1545968315591704.
Mark, L. S., Nemeth, K., Gardner, D., Dainoff, M. J., Paasche, J., Duffy, M., & Grandt, K. (1997). Postural dynamics and the preferred critical boundary for visually guided reaching. Journal of Experimental Psychology: Human Perception and Performance, 23(5), 1365.
Marteniuk, R. G., Leavitt, J. L., MacKenzie, C. L., & Athenes, S. (1990). Functional relationships between grasp and transport components in a prehension task. Human Movement Science, 9(2), 149-176.
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(3), 365.
Michaelsen, S. M., Dannenbaum, R., & Levin, M. F. (2006). Task-specific training with trunk restraint on arm recovery in stroke randomized control trial. Stroke, 37(1), 186-192.
Michaelsen, S. M., & Levin, M. F. (2004). Short-Term Effects of Practice With Trunk Restraint on Reaching Movements in Patients With Chronic Stroke A Controlled Trial. Stroke, 35(8), 1914-1919.
Michaelsen, S. M., Luta, A., Roby-Brami, A., & Levin, M. F. (2001). Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke, 32(8), 1875-1883.
Newell, K. M. (1986). Constraints on the development of coordination. Motor development in children: Aspects of coordination and control, 34, 341-360.
Newell, K. M., & Valvano, J. (1998). Movement science: Therapeutic intervention as a constraint in learning and relearning movement skills. Scandinavian Journal of Occupational Therapy, 5(2), 51-57.
Paulignan, Y., Frak, V., Toni, I., & Jeannerod, M. (1997). Influence of object position and size on human prehension movements. Experimental brain research, 114(2), 226-234.
Soechting, J. (1984). Effect of target size on spatial and temporal characteristics of a pointing movement in man. Experimental brain research, 54(1), 121-132.
Tombaugh, T., & McIntyre, N. (1992). The MMSE: A comprehensive review. Journal of the American Geriatric Society, 40, 922-935.
Trombly, C. A. (1995). Occupation: Purposefulness and meaningfulness as therapeutic mechanisms. American Journal of Occupational Therapy, 49(10), 960-972.
van Dokkum, L., Hauret, I., Mottet, D., Froger, J., Métrot, J., & Laffont, I. (2013). The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabilitation and neural repair, 1545968313498514.
van Kordelaar, J., van Wegen, E. E., Nijland, R. H., Daffertshofer, A., & Kwakkel, G. (2013). Understanding Adaptive Motor Control of the Paretic Upper Limb Early Poststroke The EXPLICIT-stroke Program. Neurorehabilitation and neural repair, 27(9), 854-863.
Wang, J., & Stelmach, G. E. (2001). Spatial and temporal control of trunk-assisted prehensile actions. Experimental brain research, 136(2), 231-240.
Wu, C. Y., Chen, Y. A., Chen, H. C., Lin, K. C., & Yeh, I. L. (2012). Pilot trial of distributed constraint-induced therapy with trunk restraint to improve poststroke reach to grasp and trunk kinematics. Neurorehabilitation and neural repair, 26(3), 247-255.
Wu, C. Y., Chen, Y. A., Lin, K. C., Chao, C. P., & Chen, Y. T. (2012). Constraint-induced therapy with trunk restraint for improving functional outcomes and trunk-arm control after stroke: a randomized controlled trial. Phys Ther, 92(4), 483-492. doi:10.2522/ptj.20110213
Wu, C. Y., Chou, S. H., Kuo, M. Y., Chen, C. L., Lu, T. W., & Fu, Y. C. (2008). Effects of object size on intralimb and interlimb coordination during a bimanual prehension task in patients with left cerebral vascular accidents. Motor control, 12(4), 296-310.
邱弘毅. (2008). 腦中風之現況與流行病學特徵. 腦中風會訊, 15(3), 2-4.
祝旭東, 王淳厚, 謝清麟, 陳美香, & 陳瓊玲. (1996). 布氏動作恢復量表之信度及同時效度研究. 職能治療學會雜誌, 14(1), 1-12.
陳怡安, 林克忠, 吳菁宜, 林瀛洲, 朱岳喬, 柯智裕, & 吳佩璇. (2010). 分散式侷限誘發療法對中風患者之軀幹控制, 日常功能, 生活品質之效益. 台灣復健醫學雜誌, 38(2), 75-88.
魏慈慧, 許瑋丹, 吳菁宜, & 林克忠. (2007a). 目標物距離與軀幹侷限對中風病患伸手及物動作表現的影響: 運動學分析. 職能治療學會雜誌, 25(1), 45-58.
魏慈慧, 許瑋丹, 吳菁宜, & 林克忠. (2007b). 活動情境中目標物距離對腦中風病患伸手及物動作之影響. 臺灣醫學, 11(3), 233-239.