| 研究生: |
曾雨森 Tseng, Yu-Sen |
|---|---|
| 論文名稱: |
斜井井壁穩定壓力分析與裂縫再開裂壓力之研究 An Analysis of the Borehole Stability and the Hydraulic Re-fracturing Pressure in Deviated Wells |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 斜井 、井壁穩定 、再開裂壓力 |
| 外文關鍵詞: | inclined wel, borehole stability, re-fracturing pressure |
| 相關次數: | 點閱:43 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鑽井工程開始前,為了避免井壁的坍塌,進行井壁穩定分析是必要的評估之一。包含大地主應力、斜井方位、地層材料性質、泥漿成分、井孔溫度等眾多因素皆會影響到井壁的穩定性。水力破裂法則是廣泛運用在油氣的開採,之後更運用在大地應力的量測。本研究以考慮斜井方位、大地應力、孔隙水壓、岩石性質等因素,運用破壞力學方式討論井壁周圍應力狀況對於穩定壓力的影響。並依據Rummel(1987)的基本理論,考慮斜井狀態下,其斜井方位、大地應力、岩石斷裂韌度、裂縫長度、孔隙水壓等因素對於裂縫再開裂壓力的影響。
研究結果顯示:井壁穩定壓力的部分,其斜井方位對於井壁穩定壓力影響隨著應力狀態不同而不同;覆蓋應力增加時穩定範圍也會增加,當側向應力比增加穩定範圍則會減少;當井壁周圍的孔隙水壓上升時其穩定範圍會明顯變小;當岩石的凝聚力與內摩擦角越大時,其井壁穩定範圍也越大。裂縫再開裂壓力的部分,在不同應力狀態下的斜井方位對於再開裂壓力影響皆不同;當覆蓋應力增加時再開裂壓力也會增加,而當側向應力比增加時再開裂壓力則會些微減少;岩石斷裂韌度不影響再開裂壓力;大部分情形,裂縫長度較長時再開裂壓力也較大;井壁周圍孔隙水壓上升時會使再開裂壓力下降。
In order to avoid the collapse of borehole, the analysis of borehole stability is necessary before the start of the drilling project. There are many factors that affect the stability of the borehole wall, including earth stress, inclined orientation, formations physical properties, mud composition, and temperature of borehole. The hydraulic fracturing is widely used not only in the oil and gas exploration, but also in the earth stress measurements. In this study, we consider the factors including inclined orientation, earth stress, pore pressure, rock properties and discuss the range of the stable pressure by various stress conditions around the wellbore by stress analysis approach. In addition, Rummel’s(1987) fracture mechanics approach was used in this study to evaluate the hydraulic re-fracturing pressure under different inclined positions, earth stresses, fracture toughness, crack lengths, pore pressures in inclined state.
The study shows that the different inclined orientations have different effects on the wellbore stability pressure. The range of stability pressure increases with the increasing of the overburden stress and decreases with the increasing of the lateral stress ratio. The increasing of pore pressure around borehole causes the range of stability pressure distinctly decreasing. When the cohesion and angle of internal friction of rocks are larger, the range of wellbore stability pressure becomes greater. The different stress states cause the different effects of inclined orientations. The re-fracturing pressure increases with the increasing of the overburden stress, and the re-fracturing pressure decreases slightly with the increasing of the lateral stress ratio. The rock fracture toughness does not affect the re-cracking pressure. In most cases, when the crack length is longer, the cracking pressure is larger. The rising of pore pressure around borehole wall causes decreasing in re-cracking pressure.
1. 呂玉蔻,「使用震源機制逆推台灣地區應力分區狀況」,國立中央大學地球物理研究所碩士論文,2004。
2. 汪蘭君、洪日豪、董家鈞、吳柏裕,「鐵砧山地區現地應力場與斷層再活動分析」,礦冶雜誌,第55卷,第一期,69-82頁,2011。
3. 林以常,「三點彎曲作用下岩石破裂韌度量測之研究」,成功大學資源工程研究所碩士論文,2000。
4. 林昆慶,「以矩形板試體求取花崗岩石材I型破裂韌度之研究」,成功大學資源工程研究所碩士論文,2008。
5. 林政億,「以破壞力學分析水力破裂法之研究」,成功大學資源工程研究所碩士論文,2006。
6. 林燈科、陳君聖、王建力,「斜井井壁穩定分析之研究」,岩盤工程研討會論文集,623-632頁,1996。
7. 張保平、方竟、丁雲宏、田國榮、申衛兵、汪永利,「用Mohr-Coulomb破壞準則預測最小水平主應力的實驗方法」,石油探勘與開發,Vol. 30,No. 6,89-91頁,2003。
8. 閆萍、孫建孟,「利用測井資料進行井壁穩定性分析」,測井與射孔,第2期,68-70頁,2007。
9. 黃伊伶,「超臨界二氧化碳對魚藤坪砂岩礦化封存機制的影響」,成功大學土木工程研究所碩士論文,2012。
10. 楊明宗、歐陽湘、柳志錫、吳建宏,「水力破裂法現地應力量測及破壞準則探討」,地工技術,第99期,5-14頁,2004。
11. 葉時青,「岩石邊坡穩定之斷裂力學分析」,成功大學資源工程研究所碩士論文,2002。
12. 潘國樑,「工程地質通論」,五南出版社,240-249頁,2007。
13. 蕭富元、張玉粦、曾慶恩、蔡政憲,「套鑽法現地應力量測技術於台灣之應用」,岩盤工程研討會論文集,621-630頁,台南,2006。
14. 賴俊仁,「四點彎曲作用下花崗岩混合模式破裂韌度量測之研究」,成功大學資源工程研究所碩士論文,2001。
15. 謝富仁等人,「中國大陸地殼應力環境基礎資料庫」,地球物理學進展,Vol. 22,No. 1,131-136頁,2007。
16. 嚴珮綺,「利用鑽井資料推估台灣新竹至台中地區的地下現地應力狀態」,中央大學地球物理研究所碩士論文,2012。
17. 鐘翊珊,「二氧化碳封存機制下對岩石力學性質之影響」,成功大學資源工程研究所碩士論文,2011。
18. Al-Bazalia, T., J. Zhang, M. E. Chenevert, and M. M. Sharma, “Maintaining the stability of deviated and horizontal wells: effects of mechanical, chemical and thermal phenomena on well designs,” Geomechanics and Geoengineering: An International Journal, Vol. 3, pp. 167-178, 2008
19. Anderson, E. M., “The dynamics of faulting,” Oliver and Boyd, Edinburgh, 1951.
20. Atkinson, K. B., “Fracture mechanics of rock,” Academic Press, 1987.
21. Bell, F. G., “Engineering geology and construction,” CRC Pres, 2004.
22. Cheatham, J. B. and P. D. Pattilo, “Helical postbuckling configuration of a weightless column under the axial load,” Society of Petroleum Engineers, Vol. 24, pp. 467-472, 1984.
23. Coulomb, C. A., “Essai sur une application des regles de maximis et minimis a quelques problèmes de statique, relatifs a l'architecture,” Memoires de Mathematique et de Physique, Présentés, à l'Academie Royale des Sciences, Paris, Vol. 7, pp. 343–382, 1776.
24. Germanovich, L. N., R. L. Salganik, A. V. Dyskin, and K. K. Lee, “Mechanisms of brittle fracture of rocks with multiple pre-existing cracks in compression,” Pure and Applied Geophysics, Vol. 143, No. 1/2/3, pp. 117-149, 1994.
25. Gidley, J. L., S. A. Holditch, D. E. Nierode, and R. W. Veatch, “Recent advances in hydraulic fracturing,” SPE Monograph Series, Vol. 12, 1990.
26. Goodman, R. E., “Introduction to rock mechanics,” 2nd Edition, John Wiley & Sons, New York, pp. 28-186, 1989.
27. Griffith, A. A., “The phenomena of ruptures and flow in solids,” Philosophical Transactions of the Royal Society, Vol. A221, pp. 163-198, 1920.
28. Haimson, B. C., M. Y. Lee, and I. Song, “Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp. 1243–1256, 2003.
29. Hardy, M. P. and M. I. Asgian, “Fracture reopening during hydraulic fracturing stress determination,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 26, No. 6 , pp. 489-497, 1989.
30. Hoek, E. and E. T. Brown, “Underground excavations in rock,” E & FN SPON, 1980.
31. Hubbert, M. K. and D. G. Willis, “Mechanics of hydraulic fracturing,” Trans. AIME , Vol. 210, pp. 153-168, 1957.
32. Hung, J. H. and J. C. Wu, “In-situ stress and fault reactivation associate with LNG injection in the Tienchanshan gas field, fold-thrust belt of western Taiwan,” European Geosciences Union 2011 Assembly, 2011.
33. Irwin, G. R., “Analysis of stresses and strains near the end of a crack traversing a plate” Journal of Applied Mechanics, 24, pp. 361-364, 1957.
34. ISRM Testing Commission, “Suggested method for determining mode i fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 32, pp. 57-64, 1995.
35. ISRM Testing Commission, “Suggested methods for determining the fracture toughness of rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 25, pp. 71-96, 1988.
36. Ito, T., A. Funato, W. Lin, M. L. Doan, D. F. Boutt, Y. Kano, H. Ito, D. Saffer, L. C. McNeill, T. Byrne, and K. T. Moe, “Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis: A case study in the IODP expedition 319,” Journal of Geophysical Research: Solid Earth, Vol. 118, pp. 1203-1215, 2013.
37. Kirsch, G. Z., “Die theorie der elastizität und die bedürfnisse der festigkeitslehre,” Zeitschrift des Vereines deutscher Ingenieure, Vol. 42, pp. 797-807, 1898.
38. Kumar, D., S. Ansari, S. Wang, Y. M. Jiang, S. Ahmed, M. Povstyanova, and B. Tichelaar, “Real-time wellbore stability analysis: An observation from cavings at shale shakers,” AAPG International Convention and Exhibition, Singapore, September, 2012
39. McLean, M.R. and M.A. Addis, “Wellbore stability analysis: A review of current methods of analysis and their field application,” IADC/SPE 19941, pp. 261-274, 1990.
40. Miller, B. G., “Coal energy systems,” Academic Press, 2005.
41. Mohiuddin, M. A., K. Khan, A. Abdulraheem, A. Al-Majed, and M. R. Awal, “Analysis of wellbore instability in vertical, directional, and horizontal wells using field data,” Journal of Petroleum Science and Engineering, Vol. 55, pp. 83–92, 2007.
42. Mohr, O., “Welche umstände bedingen die elastizitätsgrenze und den bruch eines materials,” In: Zeitschrift des Vereins Deutscher Ingenieure., pp. 1524-1530 and 1572-1577, 1900.
43. Montgomery, C. T. and M. B. Smith, “Hydraulic fracturing. history of an enduring technology,” The Journal of Petroleum Technology, December, pp. 26-41, 2010.
44. Newman, J. C., “Stress analysis of simply and multiply connected regions containing cracks by the method of boundary collocation,” Master's thesis, Virginia Polytechnic Institute, 1969.
45. Paris, P. C. and G. C. Sih, “Stress analysis of cracks,” ASTM STP 381, pp. 30-83, 1965.
46. Pašić, B., N. Gaurina-Međimurec, and D. Matanović, “Wellbore instability: causes and consequences,” Rudarsko-geološko-naftni zbornik, Vol. 19, pp. 87-98, 2007.
47. Perkins, T. K. and L. R. Kern, “Widths of hydraulic fractures,” Journal of Petroleum Technology, Vol. 13, pp. 937-949, 1961.
48. Rummel, F., “Fracture mechanics approach to hydraulic fracturing stress measurements,” In: Fracture Mechanics of Rock (ed. Atkinson), Chapter 6, pp. 217-239, 1987.
49. Rutqvist, J., C. F. Tsang, and O. Stephansson, “Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 107-120, 2000.
50. Santarelli, F. J., D. Dahen, H. Baroudi, and K. B. Sliman, “Mechanisms of borehole instability in heavily fractured rock media,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 29, pp. 457–467, 1992.
51. Saouma, V. E., “Lecture notes in: Fracture mechanics,” 2000.
52. Stevens, P., “The 'shale gas revolution': Developments and changes,” Chatham House, August, 2012.
53. Thompson, J. C., “Deep directional drilling,” SPE Deep Drilling and Production Symposium, 1979.
54. Tingay, M. R. P., B. Müller, J. Reinecker, O. Heidbach, F. Wenzel, and P. Fleckenstein, “Understanding tectonic stress in the oil patch: The world stress map project,” The Leading Edge, Vol. 24, pp. 1276-1282, 2005.
55. Vardoulakis, I., J. Sulem, and A. Guenot, “Borehole instabilities as bifurcation phenomena,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 25, pp. 159-170, 1988.
56. Westergaard, H. M., “Bearing pressures and cracks,” Journal of Applied mechanics, Vol. 6, pp. 49-53, 1939.
57. Yew, C. H. and Y. Li, “Fracturing of a deviated well,” SPE Production Engineering, November, pp. 429-437, 1988.
58. Zhang, X., N. Last, W. Powrie, and R. Harkness, “Numerical modelling of wellbore behaviour in fractured rock masses,” Journal of Petroleum Science and Engineering, Vol. 23, pp. 95-115, 1999.
59. Zoback, M. L., M. D. Zoback, J. Adams, M. Assumpcão, S. Bell, E. A. Bergman, P. Blüemling, N. R. Brereton, D. Denham, J. Ding, K. Fuchs, N. Gay, S. Gregersen, H. K. Gupta, A. Gvishiani, K. Jacob, R. Klein, P. Knoll, M. Magee, J. L. Mercier, B. C. Müeller, C. Paquin, K. Rajendran, O. Stephansson, G. Suarez, M. Suter, A. Udias, Z. H. Xu, M. Zhizin, “Global patterns of tectonic stress,” Nature, Vol. 341, pp. 291-298, 1989.
60. Zoback, M. L., “First- snd second-order patterns of stress in the lithosphere: the world stress map,” Journal of Geophysical Research, Vol. 97, No. b8, pp. 11703-11728, 1992.