簡易檢索 / 詳目顯示

研究生: 高儷綺
Kao, Li-Chi
論文名稱: 利用反射式二次諧波即時觀察鋅量子點同調成長在矽(111)上之氧化過程
In-situ observation on oxidation process of Zn dots coherently grown on Si (111) by second harmonic generation
指導教授: 羅光耀
Lo, Kuang-Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 78
中文關鍵詞: 即時量測二次諧波鋅/氧化鋅量子點氧化
外文關鍵詞: In-situ, Second harmonic generation, Zn/ZnO dots, Oxidation
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米維度金屬氧化過程及機制是個重要的研究課題,如果金屬氧化將會損害其本身的功能和壽命,尤其當奈米金屬材料成長在半導體上作為導電等運用 (contacts and interconnects),氧化將會造成接觸面之鬆弛或缺陷,進而產生電力耗損,所以了解奈米金屬成長在基板氧化後的結構及其介面之變化是迫切需要的事情。我們利用特殊的射頻磁控濺鍍製程使鋅量子點同調成長在矽(111)基板上及即時反射式二次諧波來觀察鋅量子點的氧化過程,結構完全被矽(111)表面侷限的鋅量子點和氧化後所形成的氧化鋅球殼將會貢獻3m對稱點群的極化在反射式二次諧波的結果,雷射光班面積下量子點多於1010顆,由整體的淨極化強度之改變來評估不同尺寸所造成結果變化。氧化將會導致鋅量子點尺寸減少及鋅和矽(111)介面發生應力鬆弛的現象,使二次諧波訊號改變。藉由同步輻射XRD分析可以得知量子點氧化後之晶體取向,FE-SEM觀察其表面形貌,XPS縱深分析其鋅和氧的成分比例。因此,我們將進一步解決奈米維度金屬量子點成長在半導體上的氧化問題,可以作為未來奈米元件製程上的參考。

    It is a significant issue to research the oxidation process and mechanisms of metallic nanoparticles. When the nanoscale metallic components are oxidized, it will damage their functions and life time. Particularly, metallic nanoparticles are grown on the semiconductor components as contacts or interconnects. The oxidation may result in the relaxation or void defects of metal nanocontacts, and then reduce the conductivity. It is important to study structural changes of metallic nanoparticles grown on the substrate and their interface after oxidation. We used strategic RF magnetron sputtering to fabricate Zinc quantum dots coherently grown on the Si (111) substrate and in-situ analyzed the oxidation process of Zn quantum dots by reflective second harmonic generation (RSHG). Fully constrained Zn dots and sequent oxidized ZnO shell contributed 3m symmetrical dipole to RSHG pattern. The spot area of pump laser would cover more than 109 dots and exhibited net symmetrical dipole contribution to RSHG pattern which depended on the constrain degree of Zn quantum dots constrained Si (111). The oxidation phenomena would lead to the reduction of Zn core and relax the stress between Zn dots and Si (111), which caused the change in RSHG pattern. Synchrotron X-ray diffraction (XRD) patterns could confirm RSHG result and give the evolution of all possible crystal orientations in the oxidization. Besides, we utilized the field emission - scanning electron microscope (FE-SEM) to observe the micrographs and the depth scan of X-ray photoelectron spectroscopy (XPS) spectra to realize the microstructure of Zn/ZnO core-shell quantum dots via oxidation, respectively. As a result, we further solve the key problem of the oxidation of metallic dots grown on semiconductor as the reference of nano device in the future.

    摘要 i Abstract ii 誌謝 iii List of Figures v List of Tables ix Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Literature Review 2 Chapter 2 Theory 5 2.1 The Properties of Zinc Oxide 5 2.2 The Structures of Zn, ZnO and Si (111) 5 2.3 The Nucleation Mechanisms of Dots 7 2.4 The Mechanisms of the Oxidation of Nanoscale Metal 9 2.4.1 The Mechanisms of the Oxidation of Zinc Dots 9 2.4.2 Cabrera-Mott Model 10 2.4.3 Kirkendall Effect 13 2.4.4 Stress Evolution of Metal Dots 17 Chapter 3 The Theory of Second Harmonic Generation of Zn/ZnO Dots 21 3.1 The Theory of Second Harmonic Generation 21 3.2 The SHG of Zn/ZnO dots 23 Chapter 4 Experiments 25 4.1 Radio Frequency (RF) Magnetron Sputtering 29 4.2 In-situ Reflective Second Harmonic Generation 30 4.2.1 Optical Measurement System 30 4.2.2 Integration System 32 4.3 X-ray Diffraction 32 Chapter 5 Results and Discussion 34 5.1 The Zn Dots under Different Oxygen Pressure and Temperature 34 5.2 The In-situ Observed Oxidation Process of Zn Dots under Different Oxygen Pressure 39 5.3 The In-situ Observed Oxidation Process of Zn Dots under Different Temperature 50 5.4 The Time Dependence of Oxidation Process of Zn Dots under Different Oxygen Pressure and Substrate Temperature 58 Chapter 6 Conclusion 64 Reference 65

    [1]. Kamal Mahir Sulieman, Xintang Huang, Jinping Liu and Ming Tang, Nanotechnology 17, 4950–4955 (2006).
    [2]. Deepak Chhikara, M. Senthil Kumar, K.M.K. Srivatsa, Superlattices and Microstructures 82, 368–377 (2015).
    [3]. Jin-Han Lin, Ranjit A. Patil, Rupesh S. Devan, Zhe-An Liu, Yi-Ping Wang, Ching-Hwa Ho, Yung Liou & Yuan-Ron Ma, SCIENTIFIC REPORTS 4, 6967 (2014).
    [4]. C.C. Liu, J.H. Huang, C.S. Ku, S.J. Chiu, J. Ghatak, S. Brahma, C.W. Liu, C.P. Liu, and K.Y. Lo, Scientific Reports 5, 12533 (2015).
    [5]. Weibel, Zoran R. Jovanovic, Elena Gálvez, and Aldo Steinfeld, Chem. Mater., 26, 6486−6495 (2014).
    [6]. R.Nakamura, J.-G. Lee, D. Tokozakura , H. Mori, H. Nakajima, Materials Letters 61, 1060–1063 (2007).
    [7]. Haibo Zeng, Weiping Cai, Bingqiang Cao, Jinlian Hu, Yue Li, and Peisheng Liu, Appl. Phys. Lett. 88, 181905 (2006).
    [8]. P. Camarda, L. Vaccaro, F. Messina, and M. Cannas, APPLIED PHYSICS LETTERS 107, 013103 (2015).
    [9]. Haibo Zeng, Zhigang Li, Weiping Cai, Bingqiang Cao, Peisheng Liu, and Shikuan Yang, J. Phys. Chem. B, Vol. 111, No. 51 (2007).
    [10]. P. Camarda, L. Vaccaro, F. Messina, and M. Cannas, APPLIED PHYSICS LETTERS 107, 013103 (2015).
    [11]. Waiz Karim, Armin Kleibert, Urs Hartfelder, Ana Balan, Jens Gobrecht, Jeroen A. van Bokhoven & Yasin Ekinci, Scientific Reports 6, 18818 (2016).
    [12]. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
    [13]. Zhong Lin Wang, J. Phys.: Condens. Matter 16, R829–R858 (2004).
    [14]. Lukas Schmidt-Mende and Judith L. MacManus-Driscoll, materialstoday VOLUME 10, NUMBER 5 (2007).
    [15]. Zhong Lin Wang, J. Phys.: Condens. Matter 16, R829–R858 (2004).
    [16]. https://en.wikipedia.org/wiki/Zinc#/media/File:Hexagonal_close_packed.svg.
    [17]. Mika Niskanen, Mikael Kuisma, Oana Cramariuc, Viacheslav Golovanov, Terttu I. Hukka, Nikolai Tkachenko and Tapio T. Rantala, Phys. Chem. Chem. Phys., 15, 17408--17418 (2013).
    [18]. http://www.iue.tuwien.ac.at/phd/ungersboeck/node27.html.
    [19]. J. Y. Guo, Y. W. Zhang and C. Lu, Computational Materials Science 44, 174–179 (2008).
    [20]. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars and P. M. Petroff, Appl. Whys. Lett., Vol. 63, No. 23, 6 (1993).
    [21]. D. J. Eaglesham and M. Cerullo, PHYSICAL REVIEW LETTERS, VOLUME 64, NUMBER 16 (1990).
    [22]. RUUD M. TROMP and JAMES B. HANNON, Surface Review and Letters, Vol. 9, Nos. 3 & 4, 1565-1593 (2002).
    [23]. Jörg Polte, CrystEngComm, 17, 6809–6830 (2015).
    [24]. Xian-Ming Baia and Mo Lib, J. Chem. Phys. 124, 124707 (2006).
    [25]. M. Perez, Scripta Materialia, 52, 709–712 (2005).
    [26]. BENJAMIN D. HAMILTON, JEONG-MYEONG HA, MARC A. HILLMYER AND MICHAEL D. WARD, ACCOUNTS OF CHEMICAL RESEARCH, Vol. 45, No. 3, 414–423 (2012).
    [27]. N. Caberra and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948–1949).
    [28]. C. M. Wang, D. R. Baer, L. E. Thomas, J. E. Amonette, Jiji Antony and You Qiang, G. Duscher, J. Appl. Phys. 98, 094308 (2005).
    [29]. Giuliana Litrico, Pierre Proulx, J.-B. Gouriet, Patrick Rambaud, Advanced Powder Technology 26, 1–7 (2015).
    [30]. Phaedon Avouris, Tobias Hertel, and Richard Martel, Appl. Phys. Lett., 71 (2), (1997).
    [31]. V.P. Zhdanov and B. Kasemo, Chemical Physics Letters 452, 285–288 (2008).
    [32]. Alexandre Ermoline and Edward L. Dreizin, Chemical Physics Letters, 505, 47–50 (2011).
    [33]. R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee and H. Mori, JOURNAL OF APPLIED PHYSICS 101, 074303 (2007).
    [34]. Yadong Yin, Robert M. Rioux, Can K. Erdonmez, Steven Hughes, Gabor A. Somorjai, A. PaulAl ivisatos, Science 304, 711 (2004).
    [35]. Zhijie Yang, Nailiang Yang, and Marie-Paule Pilen, J. Phys. Chem. C, 119, 22249−22260 (2015).
    [36]. Abdel-Aziz El Mel, Ryusuke Nakamura and Carla Bittencourt, Beilstein J. Nanotechnol, 6, 1348–1361 (2015).
    [37]. Guang-Ming Lu, Yan-Li Lu, Ting-Ting Hu and Zheng Chen, Modelling Simul. Mater. Sci. Eng. 24 035001 (2016).
    [38]. Y.Yin, R.M.Rioux, C.K.Erdonmez, S.Hughes, G.A.Somorjai, A.P.Alivisatos, Science 304(2004)711.
    [39]. Hong Jin Fan, Mato Knez, Roland Scholz, Dietrich Hesse, Kornelius Nielsch, Margit Zacharias, and Ulrich Go1sele, Nano Lett., Vol. 7, No. 4, 2007.
    [40]. Justin G. Railsback, Aaron C. Johnston-Peck, Junwei Wang, and Joseph B. Tracy, NO. 4, 1913–1920, VOL. 4 (2010).
    [41]. K. N. Tu and U. Gösele, APPLIED PHYSICS LETTERS 86, 093111 (2005).
    [42]. V.P. Zhdanov and B. Kasemo, Nano letter, 9, 2172 (2009).
    [43]. L. Klinger, E.Rabkin, MaterialsLetters161, 508–510 (2015).
    [44]. Franz D. Fischer, Jirˇi Svoboda, International Journal of Solids and Structures 47, 2799–2805 (2010).
    [45]. J. Svoboda, F. D. Fischer, Acta materialia, 59, 61 (2011).
    [46]. Haibo Zeng, Xiaoming Li, Huijie Zhao, Xue Ning and Jiayue Xu, RSC Adv., 5, 25717–25722 (2015).
    [47]. Chun-Hua Chen, Tomohiko Yamaguchi, Ko-ichi Sugawara, and Kenji Koga, J. Phys. Chem. B, Vol. 109, No. 44 (2005).
    [48]. E. Sutter and P. Sutter, J. Phys. Chem. C, 116, 20574−20578 (2012).
    [49]. Eli Sutter , Francisco Ivars-Barcelo , and Peter Sutter, Part. Part. Syst. Charact., 31, 879–885 (2014).
    [50]. Robert W. Boyd, “ Nonlinear Optics 3ed. ” (2008).
    [51]. Yu-Han Liang, Jun-Han Huang, Neng-Chieh Chang, and Chuan-Pu Liu, Crystal Growth & Design, Vol. 9, No. 5 (2009).
    [52]. R. Behrisch and W. Eckstein, “ Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to MeV Energies” (2007).
    [53]. L.B. Freund and S. Suresh, “ Thin Film Materials:Stress, Defect Formation and Surface Evolution” (2003).
    [54]. Y.R. Shen, Ann. Rev. Mater. Sci. 16: 69-86 (1986).

    下載圖示 校內:2021-08-16公開
    校外:2021-08-16公開
    QR CODE