簡易檢索 / 詳目顯示

研究生: 林章生
Lin, Chang-Sheng
論文名稱: 非定常環境振動之系統模態參數識別
Modal-Parameter Identification from Nonstationary Ambient Vibration Data
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
中文關鍵詞: 非定常環境振動模態參數識別
外文關鍵詞: nonstationary ambient vibration, modal-parameter identification
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在探討如何僅利用環境振動下之結構響應資料來識別系統的模態參數。吾人利用定常響應訊號所組成的相關矩陣,使資料相關特徵系統實現法(ERA/DC)之理論能有效應用於定常白訊激勵之結構模態參數識別。另外,當環境激勵為符合乘積模型之非定常白訊時,藉由引進時調函數的分離擷取技術後,從而識別出系統之模態參數。此外,在適當的情況下,一般的非定常響應可近似表示為自然指數函數的組成,藉此應用引進擴充頻道技巧的Ibrahim 時域法進行模態參數識別,而不需將環境振動響應經由額外的數據處理為自由響應,因此可將ITD法推廣至處理更廣義的非定常環境振動系統識別問題。由數值模擬結果顯示,本文所提出的分析方法在實際的環境激勵下可得良好的模態參數識別結果,對於雜訊的影響亦有良好之強健性。

    Innovative methods are proposed in this thesis for determination of the modal parameters of a structure from its ambient response data only. The eigensystem realization algorithm with data correlation (ERA/DC) is extended for modal-parameter identification of a structural system excited by stationary white. If the ambient excitation can be modeled as nonstationary white noise in the form of a product model, we can perform modal identification through the correlation method in conjunction with a technique of curve-fitting. Furthermore, by introducing a channel-expansion technique, Ibrahim time-domain method is extended for modal-parameter identification from general nonstationary ambient vibration data, which can be approximated directly as a linear composition of exponential functions under appropriate conditions. Numerical simulations, including some examples of using practical excitation data, are performed to confirm the validity and robustness of the proposed methods for identification of modal parameters from general ambient vibration data under noisy condition.

    CONTENTS Page ABSTRACT ……………………………………………………………………… i CONTENTS ………………………………………………………………………ii LIST OF TABLES …………………………………………………………………v LIST OF FIGURES ……………………………………………………………vii CHAPTER I INTRODUCTION ………………………………………………………1 1.1 Modal Analysis and System Identification……………………1 1.2 Motivation and Objective……………………………………………2 1.3 Literature Review ………………………………………………………3 1.4 Thesis Outline …………………………………………………………6 II MODAL-PARAMETER IDENTIFICATION FROM STATIONARY AMBIENT VIBRATION DATA ……………………………………………………8 2.1 Introduction ……………………………………………………………8 2.2 Correlation Technique ………………………………………………10 2.3 Modified Eigensystem Realization Algorithm with Data Correlation……………………………………………………………………11 2.4 Numerical Simulation and Discussion …………………………15 2.4.1 Modal Identification of A 6-DOF System Subjected to Stationary White-Noise Input……………………………………………15 2.4.2 Modal Identification of A 6-DOF System Subjected to A Recorded Sample of the Chi-Chi Earthquake……………………18 2.4.3 Modal Identification of A 20-DOF System Subjected to A Recorded Sample of the Chi-Chi Earthquake……………………20 2.5 Conclusions ……………………………………………………………21 III MODAL IDENTIFICATION FROM NONSTATIONARY AMBIENT VIBRATION DATA USING CORRELATION TECHNIQUE ……………………34 3.1 Introduction ……………………………………………………………34 3.2 Theoretical Development of Correlation Technique for Nonstationary Excitation.………………………………………………35 3.3 Practical Treatment of Nonstationary Data ………………38 3.4 Ibrahim Time-Domain Modal Identification Method ………41 3.5 Numerical Simulation ………………………………………………44 3.5.1 Modal Identification of A 6-DOF System Subjected to Nonstationary White-Noise Input………………………………………44 3.5.2 Modal Identification of A 6-DOF System Subjected to Nonstationary Color Input………………………………………………46 3.5.3 Modal Identification of A 6-DOF System Containing Heavy Damping Ratios Subjected to Nonstationary White-Noise Input……………………………………………………………………47 3.5.4 Modal Identification of A 6-DOF System Containing Low-Frequency Modes Subjected to Nonstationary White-Noise Input………………………………………………………………………………48 3.5.5 Modal Identification of A 20-DOF System Subjected to Nonstationary White-Noise Input ……………………………………49 3.6 Conclusions………………………………………………………………50 IV MODAL IDENTIFICATION FROM GENERAL NONSTATIONARY AMBIENT VIBRATION DATA …………………………………………………62 4.1 Introduction……………………………………………………………62 4.2 Extension of Ibrahim Time-Domain Method for Modal-Parameter Identification from Ambient Vibration Data ………………………………………………………………………………………63 4.2.1 Modeling of Ambient Excitation ……………………………64 4.2.2 Analysis of Ambient Response ……………………………66 4.2.3 ITD Extraction…………………………………………………67 4.3 Numerical Simulation…………………………………………………71 4.3.1 Modal Identification of A 6-DOF System Subjected to Nonstationary White-Noise Input in the Forms of A Product and An Additive Model………………………………………………………71 4.3.2 Modal Identification of A 6-DOF System Subjected to Nonstationary White-Noise Input Containing Time-Varying Mean, Variance, and Frequency Content……………………………73 4.3.3 Modal Identification of A 20-DOF System Subjected to Nonstationary White-Noise Input in the Form of A Product Model………………………………………………………………………………74 4.3.4 Modal Identification of A 6-DOF System Subjected to A Recorded Sample of the Chi-Chi Earthquake……………………75 4.3.5 Modal Identification of A 7-DOF System Subjected to Nonstationary White-Noise Input………………………………………76 4.4 Conclusions ……………………………………………………………78 V SUMMARY AND CONCLUSIONS ……………………………………92 REFERENCES ……………………………………………………………………95 PUBLICATION LIST…………………………………………………………102 VITA ……………………………………………………………………………106

    Akaike, H., “Power Spectrum Estimation through Autoregressive Model Fitting,” Annals of the Institute of Statistical Mathematics, Vol. 21, No. 1, December 1969, pp.407-419.
    Allemang, R. L. and Brown, D. L., “A Correlation Coefficient for Modal Vector Analysis,” Proceedings of the 1st International Modal Analysis Conference, Society for Experiment Mechanics, Bethel, CT, 1983, pp. 110-116.
    Asmussen, J. C., Ibrahim, S. R., and Brincker, R., “Random Decrement and Regression Analysis of Bridges Traffic Responses,” Proceedings of the 14th International Modal Analysis Conference, Vol. 1, Society for Experiment Mechanics, Bethel, CT, 1996, pp. 453-458.
    Beck, J. L., “Determining Models of Structures from Earthquake Records,” Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    Beck, J. L., May, B. S. and Polidori, D. C., “Determination of Modal Parameters from Ambient Vibration Data for Structural Health Monitoring,” First World Conference on Structural Control, Vol. 2, International Association for Structural Control, Los Angeles, August 1994, pp. TA3-3-TA3-12.
    Bedewi, N. E., “The Mathematical Foundation of the Auto and Cross-random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration,” Ph. D Thesis, University of Maryland College Park, 1986.
    Chiang, D.Y. and Cheng, M. S., “Model Parameter Identification from Ambient Response,” AIAA Journal, Vol. 37, 1999, pp. 513-515.
    Code, H. A. Jr., “Methods and apparatus for measuring the damping characteristics of a structures by the random decrement technique,” United States Patent No. 3, 620, 069, 1971.
    Cremona, C. F. and Brandon, J. A., “Modal Identification Algorithm with Unmeasured Input,” Journal of Aerospace Engineering, Vol. 5, No. 4, October 1992, pp. 442-449.
    Ewins, D. J., “Modal Testing: Theory and Practice”, Research Studies Press, 1984.
    Gao, Y. and Randall, R. B., “The ITD Mode-Shape Coherence and Confidence Factor and Its Application to Separating Eigenvalue Positions in the Z-Plane,” Mechanical Systems and Signal Processing, Vol. 14, No. 2, 2000, pp. 167-180.
    Gentile, C and Gallino, N., “Ambient vibration testing and structural evaluation of an historic suspension footbridge,” Advances in Engineering Software, Vol. 39, 2008, pp. 356-366.
    Gentile, C. and Saisi, A., “Ambient vibration testing of historic masonry towers for structural identification and damage assessment,” Construction and Building Materials, Vol. 21, 2007, pp. 1311-1321.
    Gentile, C. and Saisi, A., “Ambient vibration testing and condition assessment of the Paderno iron arch bridge (1889),” Construction and Building Materials, Vol. 25, 2011, pp. 3709-3720.
    Gul, M. and Catbas, F. N., “Ambient Vibration Data Analysis for Structural Identification and Global Condition Assessment,” Journal of Engineering Mechanics, ASCE, Vol. 134, No. 8, 2008, pp. 650-662.
    He, X.H., Hua, X.G., Chen, Z.Q., and Huang, F.L., “EMD-based random decrement technique for modal parameter identification of an existing railway bridge,” Engineering structures, Vol. 33, 2011, 1348-1356.
    Hermans, L., Auweraer, H. V., Mathieu, L., and Coppens, D., “Modal parameter extraction from in-operation data,” Proceedings of the 15th International Modal Analysis Conference, 1997, pp. 531–539.
    Heylen, W., Lammens, S., and Sas, P., “Modal Analysis Theory and Testing,” Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 1998.
    Ho, B. L. and Kalman, R. E., “Effective Construction of Linear State-Variable Models from Input/Output Data,” Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, 1965, pp. 449-459.
    Hsia, T. C., “Least-Squares Theory,” System Identification: Least-Squares Methods, Lexington Books, Lexington, Massachusetts, 1977, pp.17-32.
    Ibrahim, S. R., “Random Decrement Technique for Modal Identification of Structures,” Journal of Spacecraft and Rockets, Vol. 140, No. 11, Nov. 1977, pp. 696-700.
    Ibrahim, S. R., “Modal Confidence Factor in Vibration Testing,” Journal of Spacecraft and Rockets, Vol.15, September 1978, pp.313-316.
    Ibrahim, S. R., Asmussen, J. C., and Brincker, R., “ Vector Triggering Random Decrement Technique for Higher Identification Accuracy,” Proceedings of the 15th International Model Analysis Conference, Vol. 1, 1997, pp. 502-509.
    Ibrahim, S. R., Brincker, R., and Asmussen, J. C., “Modal Parameter Identification from Responses of General Unknown Random Inputs,” Proceedings of the 14th International Model Analysis Conference, Vol. 1, 1996, pp. 446-452.
    Ibrahim, S. R. and Mikulcik, E. C., “A Time Domain Modal Vibration Test Technique,” Shock and Vibration Bulletin, Vol. 43, Pt. 4, 1973, pp. 21-37.
    Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses,” Shock and Vibration Bulletin, Vol. 46, Pt. 5, August 1976, pp. 183-198.
    Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direct Identification of Vibration Parameters from Free Response,” Shock and Vibration Bulletin, Vol. 47, Pt. 4, September 1977, pp. 183-198.
    Ibrahim, S. R., Wentz, K. R. and Lee, J., “Damping Identification Using a Multi-Triggering Random Decrement Technique,” Journal of Mechanical Systems and Signal Proceeding, Vol. 1, No. 4, October 1987, pp. 389-397.
    James, G. H., Carne, T. G., and Edmunds, R. S., “STARS Missile – Modal Analysis of First-Flight Data Using the Natural Excitation Technique, NExT,” Proceedings of the 12th International Model Analysis Conference, Society for Experiment Mechanics, Bethel, CT, 1994, pp. 231-238.
    James, G. H., Carne, T. G., and Lauffer, J. P., “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Turbines,” Sandia National Laboratories, Report SAND92-1666, Albuquerque, NM, 1993.
    James, G. H., Carne, T. G., and Lauffer, J. P., “The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Structures,” Modal Analysis : The International Journal of Analytical and Experimental Modal Analysis, Vol. 10, No. 4, 1995, pp. 260-277.
    Jazwinski, A.H., Stochastic Process and Filtering Theory, Academic Press, 1970.
    Juang, J. N., Cooper, J. E. and Wright J. R., “An Eigensystem Realization Algorithm using Data Correlations (ERA/DC) for Modal Parameter Identification,” Control-Theory and Advanced Technology, Vol. 4, No. 1, March, 1988, pp. 5-14.
    Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, September-October 1985, pp. 620-627.
    Kalman, R.F., “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, ASME, 1960, Vol. 83, pp. 35-45.
    Newland, D. E., “Application notes:Non-stationary processes,” An Introduction to Random Vibrations, Spectral Analysis & Wavelet Analysis, 3rd ed., Longman, London, 1993, pp. 211-217.
    Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis Via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory,” Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis,” Shock and Vibration Bulletin, Vol. 51, Part. 3, 1981, pp. 43-72.
    Ren, W. -X., Zatar W., and Harik, I. E., “Ambient vibration-based seismic evaluation of a continuous girder bridge,” Engineering Structures, Vol. 26, 2004, pp. 631-640.
    Sandler, I.S., “Using On the uniqueness and stability of endochronic theories of material behavior,” Journal of Applied Mechanics, ASME, Vol. 45, No. 2, 1978, pp. 263-266.
    Shen, F., Zheng, M., Feng Shi, D., and Xu, F., “Using The Cross-correlation Technique To Extract Modal Parameters On Response-Only Data,” Journal of Sound and Vibration, Vol. 259, No. 5, 2003, pp. 1163-1179.
    Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes,” Journal of the Acoustical Society of America, Vol. 49, No.1, 1971, pp. 357-367.
    Shinozuka, M. and Jan, C.-M., “Digital Simulation of Random Processes and its Applications,” Journal of Sound and Vibration, Vol. 25, No. 1, 1972, pp. 111-128.
    Siringoringo, D.M. and Fujino, Y. "System identification of suspension bridge from ambient vibration response," Engineering Structures, Vol. 30, 2008, pp.462-477.
    Stephen, H. C. and William, D. M., “Characterization of Random Vibration:Wide-Band and Narrow-Band Random Processes,” Random Vibration in Mechanical Systems, Academic press, New York, 1973, pp. 38-53.
    Van Overschee, P. and De Moor, B., “Subspace Algorithms for the Stochastic Identification Problem,” Automatica, Vol. 29, No. 3, 1993, pp. 649-660.
    Vandiver, J. K., Dunwoody, A. B., Campbell, R. B., and Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique,” Journal of Mechanical Design, Vol. 104, April 1982, pp. 307-313.
    Ventura, C. E., Felber , A. J., and Prion, H. G. L., “Seismic Evaluation of a Long Span Bridge by Model testing,” Proceeding of the 12th International Model Analysis Conference, 1994, pp. 1309-1315.
    Ventura, C. E., Liam Finn, W.D., Lord, J.-F., and Fujita, N., “Dynamic Characteristics of a Base Isolated Building from Ambient Vibration Measurements and low level earthquake shaking,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 4, 2003, pp. 313-322.
    Ventura, C. E., Schuster, N. D. and Feiber, A. J., “Ambient Vibration Testing of a 32 Story Reinforced Concrete Building During Construction,” Proceedings of the 13th International Model Analysis Conference, Society for Experimental mechanics, Bethel, CT, 1995, pp. 1164-1170.
    Zeiger, H. P. and McEwen, A. J., “Approximate Linear Realizations of Given Dimension Via Ho’s Algorithm,” IEEE Transactions on Automatic Control, Vol. AC-19, No. 2, April 1974, pp. 153-153.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE