| 研究生: |
陳立心 Chen, Li-Shin |
|---|---|
| 論文名稱: |
近紅外線連續光系統下之多頻譜方法和多距離方法於乳癌偵測之比較 Evaluation of Multi-Wavelength and Multi-Distance methods in Breast Cancer Detection by CW NIRS |
| 指導教授: |
詹寶珠
Chung, Pau-Choo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 近紅外線 、乳癌 、連續光系統 、生物組織光學性質 |
| 外文關鍵詞: | NIR, breast cancer, Continuous-Wave System, Biological Optical property |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據世界衛生組織的資料顯示,在發達國家和發展中國家乳癌都是婦女最常見的癌症。但若是能越早發現,存活率越高,因此提早診斷出乳癌,一直是醫學界努力的目標。然而目前診斷乳癌的方式都有其缺點,無法兼顧精確度、舒適度與便利性。
癌細胞在成長的過程中,腫瘤組織需要消耗較多的氧氣,導致腫瘤組織血氧濃度較正常組織來的低,因而增加血管新生刺激因子的分泌,使得血管有增生的現象,腫瘤組織的血流量也因此比正常組織來的高,這些變化都會使得腫瘤組織的光學性質改變。
在本論中我們將比較兩種近紅外線連續光系統下量測生物組織光學性質的方法,Multi-Distance method和使用六波長的Multi-Wavelength method,於以正常乳房組織之吸收與散射係數範圍為量測目標時的準確度,以及有腫瘤之乳房組織為量測目標時的量測靈敏度。希望未來能藉由非侵入式光學檢測,提供一個具有低成本、非侵入性、操作簡單等特色的乳癌檢測方式。
我們利用液態假體實驗以及Mesh-based Monte Carlo Simulation的方式去比較這兩種方法。
實驗結果發現,Multi-Wavelength method在使用六波長的條件下量測均質組織的量測精準度不比Multi-Distance method差,在量測非均質組織的情況下,可以偵測出淺層腫瘤組織所造成的光學性質變化。
According to the report of World Health Organization shows that Breast cancer is the top cancer in women both in the developed and the developing world. But if it is found early the higher survival rate we have, therefore, early diagnosis of breast cancer has been the goal of the medical profession efforts. However the present mainstream diagnosis way has its shortcoming and it is unable to give dual attention to precision, comfort and convenience.
The growth process of cancer cells, will be accompanied by the phenomenon of angiogenesis, blood flow to the tumor tissue will come higher than normal tissue and tumor tissue will consume more oxygen, resulting in oxygen concentration in the tumor tissue compared to normal tissue low. These variation will change the optical properties of tumor tissue.
This thesis will compare two methods of CW NIRS to measure biological optical properties, one is Multi-Wavelength method which was based on only six wavelengths and another one is Multi-Distance method. The study used these two methods to measure the absorption and scattering coefficient range of normal breast tissue and the breast tissue with tumor, and to compare the measurement sensitivity of these two methods. The purpose of this study is to explore a non-invasive optical detection in the future.
The liquid phantom and Mesh-based Monte Carlo Simulation were used in the experiments to compare Multi-Wavelength method and Multi-Distance method.
The founding is that Multi-Distance method is not much better than Multi-Wavelength method, Multi-Wavelength method can detect the change of optical property which is caused by tumor in the case of shallow non-homogeneous tissue.
[1] WHO website: http://www.who.int/zh/
[2] Health Promotion Administration, Ministry of Health and Welfare website: http://www.hpa.gov.tw/BHPNet/Web/Index/Index.aspx
[3] Cutler M, “ Transillumination of the breast.” Surg Gynecol Obstet., vol. 48, pp. 48:721-727, 1931.
[4] Patterson M.S, Moulton J.D, Wilson B.C, Berndt K.W and Lakowicz J.R, “Frequency-domain reflectance for determination of the scattering and absorption properties of tissue.” Appl. OPT., vol. 30, pp. 4474-4476, 1991.
[5] Fishkin J.B, So P.T.C, Cerussi A.E, Fantini S, Franceschini M.A and Gratton E, ”Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom.” Appl. Opt., vol. 34, pp. 1143-1155, 1995.
[6] Tromberg B.J, Coquoz1 O, Fishkin J.B, Pham T, Anderson E.R, Butler J, Cahn M, Gross J.D, Venugopalan V and Pham D, “Non–invasive measurements of breast tissue optical properties using frequency–domain photon migration.”, Phil. Trans. R. Soc. Lond. B., vol. 352, pp. 661-668, 1997.
[7] Pogue B, Testorf M, McBride T, Osterberg U and Paulsen K, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection.”, Optics Express, vol. 1, pp. 391-403, 1997.
[8] McBride T.O, Pogue B.W, Jiang S,Österberg U.L and Paulsen K.D, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo”, Rev. Sci. Instrum., vol. 72, pp. 1817-1824, 2001.
[9] Nissilä I, Hebden J.C, Jennions D, Heino J, Schweiger M, Kotilahti K,Noponen T, Gibson A, Järvenpää S, Lipiäinen L and Katila T, “Comparison between a time-domain and a frequency-domain system for optical tomography.” J. Biomed. Opt., vol 11, 064015
[10] Grosenick D, Wabnitz H, Rinneberg H.H, Moesta K.T and Schlag P.M, “Development of a time-domain optical mammograph and first in vivo applications.” Appl. Opt., vol 38, pp 2927-2943, 1999.
[11] Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A and Cubeddu R, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification.” OPTICS EXPRESS, vol. 17, no.18, 2009.
[12] Taroni P, Pifferi A, Quarto G, Spinelli L, Torricelli A, Abbate F, Villa A, Balestreri N, Menna S, Cassano E and Cubeddu R, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy.” J. Biomed. Opt., vol.15, 060501, 2010.
[13] Taroni P, Comelli D, Farina A and Pifferi A, “Time-resolved diffuse optical spectroscopy of small tissue samples.” OPTICS EXPRESS, vol. 15, no.16, 2007.
[14] Torricelli A, Pifferi A, Taroni P, Giambattistelli E, and Cubeddu R, “In vivo optical characterization of human tissues from 610 to 1010 nm, by time-resolved reflectance spectroscopy.” Phys. Med. Biol., vol. 46, no. 8, 2001.
[15] Michael G. Nichols, Edward L. Hull, and Thomas H. Foster“Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems” Optical Society of America , 1997
[16] Kienle A, Lilge L, Patterson M.S, Hibst R, Steiner R and Wilson B.C, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue.” APPLIED OPTICS, vol. 35 No. 13, 1996.
[17] Farrell T.J, Patterson M.S, and Wilson B, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo.” Med. Phys., vol. 19, pp. 879-888, 1992.
[18] Jacques S.L, “Spectral imaging and analysis to yield tissue optical properties.” Journal of Innovative Optical Health Sciences, vol. 2, pp. 123-129, 2009.
[19] Haskell R.C, Svaasand L.O, Tsay T.T, Feng T.C, McAdams M.S and Tromberg B.J, “Boundary conditions for the diffusion equation in radiative transfer.” Optical Society of America, vol.11, pp. 2727-2741, 1994.
[20] Rinaldo Cubeddu, Cosimo D’Andrea, Antonio Pifferi, Paola Taroni,Alessandro Torricelli, Gianluca Valentini, Colin Dover, David Johnson,Margarita Ruiz-Altisent, and Constantino Valero“Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm” Optical Society of America , 2001
[21] Bruce J.Tromberg ,Natasha Shah,Ryan Lanning,Albert Cerussi,Jennifer Espinoza,Tuan Pham,Lars Svaasand and John Butler“Non-Invasive In Vivo Characterization of Bresat Tumors Using Photon Migration Sprctroscopy”Neoplasia.Vol.2,Nos. 1-2, January-Aprial 2000
[22] Daniel Richard Leff , Oliver J. Warren, Louise C. Enfield,Adam Gibson,Thanos Athanasiou,Darren K. Patten,Jem Hebden,Guang Zhong Yang,Ara Darzi“Diffuse optical imaging of the healthy and diseased breast:A systematic review”Received: 22 December 2006 / Accepted: 26 March 2007 / Published online: 28 April 2007
[23] Qianqian Fang“Mesh-based Monte Carlo method using fast raytracing in Plücker coordinates. ” BIOMEDICAL OPTICS EXPRESS Vol.1, No.1 ,2 August 2010
[24] Saugata Sarkar,Abhijit A. Gurjarpadhye,Christopher G. Rylander,Marissa Nichole Rylander,“Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns.”Journal of Biomedical Optics 16(5), 051304 (May 2011)
校內:2019-08-26公開