| 研究生: |
劉純宇 Liu, Chung-Yu |
|---|---|
| 論文名稱: |
BiFeO3鐵電薄膜之製備與特性研究 Fabrication and Characterization of BiFeO3 Ferroelectric Thin Films |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電子陶瓷 、磁性 、鐵電材料 、鐵電記憶體 |
| 外文關鍵詞: | magnetoelectric, ferroelectric material, ferroelectric, BiFeO3, thin film |
| 相關次數: | 點閱:93 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用反應性磁控濺鍍法沉積BiFeO3做為FeRAM中鐵電薄膜之材料;由於BiFeO3有極高的漏電流,故本實驗探討在BiFeO3中加入兩種不同量的BaTiO3分別製作成BiFeO3、(BiFeO3)0.7 -(BaTiO3)0.3、 (BiFeO3)0.5-(BaTiO3)0.5固溶體靶材,並探討三種不同靶材所製備出薄膜之特性。
本研究使用低掠角X光繞射儀(GIAXRD)對薄膜的結構及結晶性進行分析,使用拉塞福背向散射分析儀(RBS)做薄膜組成成份與密度之分析,使用X光光電子能譜儀進行化學鍵結狀態分析,利用振動樣品量測儀(VSM)量測薄膜之磁化率。在電性量測方面,吾人將其製作成Pt/(BiFeO3)x-(BaTiO3)1-x /Pt/Ti/SiO2/Si結構,使用鐵電量測儀量測薄膜的鐵電性;並利用Picoampere meter量測I-V曲線,以瞭解其漏電性質。
由實驗結果發現,Bi2O3 + Fe2O3粉末經過兩次煆燒再以硝酸清洗的步驟後,可以消除不必要之雜相,較容易製作出具純BiFeO3相的靶材。由GIAXRD的結果發現,初鍍的 (BiFeO3)x-(BaTiO3)1-x薄膜仍是非晶狀態,但經過700 oC熱處理後將有明顯的繞射峰出現。由RBS的結果可以發現,薄膜的理論密度會隨著BaTiO3量的增多而增加,這和(BiFeO3)x-(BaTiO3)1-x塊材之理論密度會隨BaTiO3的含量增加而減少的趨勢相反。另外,由VSM量測結果發現,利用(BiFeO3)0.7-(BaTiO3)0.3靶材所沉積而得的薄膜,經700 oC、十分鐘的熱處理後,具有殘留磁化率,同時發現如果將熱處理時間拉長將有更大的殘留化率。在電性量測方面,經過熱處理後的試片,其PE曲線皆無法形成一個完整的電滯曲線,且漏電流都有隨熱處理溫度上升而明顯增加的趨勢。
In this study, BiFeO3 thin films were deposited by reactive magnetron sputtering system as the ferroelectric films in FeRAM. Because of the significant leakage of BiFeO3, three (BiFeO3)x-(BaTiO3)1-x solid solution targets of various compositions were prepared for film deposition and the material properties of the (BiFeO3)x-(BaTiO3)1-x films were characterized.
The crystalline structure of thin films was characterized by glancing incident angle X-ray diffraction(GIAXRD). The composition and the mass density were determined by Rutherford backscattering spectrometry (RBS). The chemical bonding structure of films was determined by X-ray photoelectron spectroscopy (XPS). Magnetization of the sample was measured by using the vibrating sample magnetometer (VSM). In addition, the sample was made to the Pt /(BiFeO3)x -(BaTiO3)1-x /Pt/Ti/SiO2/Si structure for electrical measurements. Ferro- electric analyzer was used to measure the ferroelectric property of thin films, and picoampere meter was used to determine the leakage current.
After calcining powders of Bi2O3 and Fe2O3, nitric acid was used to wash away the secondary phases. By this way, we can obtain the pure BiFeO3 target. According to GIAXRD result, the as deposited films are amorphous, but diffraction peaks are observed in the samples after annealing at 700oC for 10 min. from the result of RBS, analysis reveals that the mass density of (BiFeO3)0.7-(BaTiO3)0.3 thin films increases when the BaTiO3 content increases. The VSM result indicates that (BiFeO3)0.7-(BaTiO3)0.3 thin film possesses remenant magnetization after annealing at 700 oC. As heat treatment time increases, the degree of remenant magnetization increases, too. In PE curves of all annealed thin films do not present any hystersis loop. Finally, IV measurement shows that the leakage current of (BiFeO3)x-(BaTiO3)1-x films increases as the annealing temperature increases.
1. 李雅明、吳世全、陳宏名, 鐵電記憶元件, 電子月刊,第14期68 (1996).
2. J. F. Scott, and C. A. Araujo, Ferroelectric memories, Science 246, 1400 (1989).
3. A. I. Kingon, J. P. Maria and S. K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices, Nature 406, 1032 (2000).
4. G. Burns, Solid state physics, (Academic Press, New York, 1985).
5. O. Auciello, J. F. Scott and R. Ramesh, The physics of ferroelectric memoies, Phys. Today 51, 22 (1998).
6. 呂正傑、詹世雄,鐵電記憶體簡介,奈米通訊,第五卷第四期(1998).
7. H. S. Nalwa, Ferroelectric and dielectric thin films, (Academic press, New York, 2002).
8. Y. E. Roginskaya, Y. Y. Tomashpol, Y. N. Venevtsev, V. M. Petrov and G. S. Zhdanov, The Nature of the dielectric and magnetic properties of BiFeO3, Soviet Phys. JETP 23, 47 (1966).
9. C. Michel, The atomic structure of BiFeO3, Solid State Communication 7, 701 (1969).
10. M. M. Kumar and V. R. Palkar Ferroelectricity in a pure BiFeO3 ceramic, Apl. Phys. Lett. 76, 2764 (2000).
11. J. Wang, Epitaxial BiFeO3 Multiferroic thin fim heterostructures, Science 299, 1719 (2003).
12. C. Ederer and N. A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev B 71, 060401 (2005).
13. H. J. Huang and Y. Cao, Coupling between the ferroelectric andantiferromagnetic orders in YMnO3, Phys. Rev B 56, 2623 (1999).
14. S V. Kalinin, M R. Suchomel, Potential and impedance imaging of polycrystalline BiFeO3 ceramics, J. Am. Ceram. Soc. 85, 3011 (2002).
15. R. T. Smith, G. D. Achenbach, R. Gerson, and W. J. James, Dielectric Properties of solid solution of BiFeO3 with Pb(TiZrO3) at high temperature and high frequency, J. Appl. Phys. 87, 822 (2000).
16. K. U. H. Tabata and T. Kawai, Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin film at room temperature, Appl. Phys. Lett. 75, 555 (1999).
17. X, Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Appl. Phys. Lett. 86, 062903 (2005).
18. M. M. Kumart and A. Srinivas, Investigation of the magnetoelectric effect in BiFeO3-BaTiO3 solid solution, J. Phys. Condens. Matter 11, 8131 (1999).
19. W. D. Callister, Jr., Materials Science and Engineering, 4th ed. (Wiely, New York, 1985).
20. M. E. Lines and A. M. Glass, Principles and applications of ferroelectrics and related materials, (Oxford University Press, New York, 2001).
21. B. H. Park, B. S. Kang, S. D. Bu, T. W Noh, J. Lee and W. Jo, Lanthanum- substituted bismuth tianate for use in non-volatile memories, Nature 401, 682 (1999).
22. C. Kittel, Introduction to solid state physics, 7th ed. (John Wiley & Sons, New York, 1996).
23. M. Barsoum, Fundamentals of ceramics, (McGraw Hill, New York , 1994).
24. 張煦,李學養 磁性物理學 (聯經,台北市,1982).
25. K. Y. Yun, M. Noda and M. Okuyama, Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laer deposition, Appl. Phys. Lett. 83, 3981 (2003).
26. F. Kubel and H. Schmid, Structure of a ferroelectric and ferro- elastic monodomain crystal of the pervskite BiFeO3, Acta Cryst. B46, 698 (1990).
27. J. M. Moreau and C. Michel, Ferroelectric BiFeO3 X-ray and neutron diffraction study, J. Phys. Chem. Solid 32, 1315 (1971).
28. B. D. Cullity and S. R. Stock, Element of X-Ray diffraction, 3rd ed. (Prentice Hall, London 2001).
29. 李瑋志,BiFeO3-BaTiO3 系統之合成、特性及介電性質,國立成功大學資源工程研究所碩士論文 (2003).
30. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J-M Liu and Z. G. Liu, Room temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84, 1731 (2004).
31. M. M. Kumar, A. Srinivas, and S. V. Suryanarayana, Structure
property relations in BiFeO3-BaTiO3 solid solutions, J. App. Phys. 87, 855 (2000).
32. D. I. Woodward and I. Reaney, Crystal and domain structure
of the BiFeO3-PbTiO3 solid solution, J. Appl. Phys. 94, 3313 (2003).
33. I. Sosnowska, T. P. Neumaier and E. Steichele, Spiral magnetic ordering in bismuth ferrite, J. Phys. C 15, 4835 (1982).
34. T. Kaneda, H. Ito, and T. Fujii, Ferromagnetic amorphouslike oxide film of the Fe2O3-Bi2O3-PbO3 system prepared by rf-reactive sputtering, J. Appl. Phys. 69, 3663 (1991).
35. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426, 55 (2003).
36. I. Sosnowak. and A. K. Zvezdin, Origin of the long period magnetic ordering in BiFeO3, J. Magn. Magn. Mater. 140, 167 (1995).
37. M. Fiebig, Th. Lottermoser, D. Frohich, A. V. Goltsev and R. V. Pisarev, Observation of coupled magneric and electric domains, Nature 419, 818 (2002).
38. N. A. Hill, Why are there so few magnetic ferroelectrics, J. Phys. Chem. B 104, 6694 (2000).
39. T. Fujii, S. Shimizu, A. Kajima and T. Miyama, Film fabrication of solid solution of the BiFeO3-BaTiO3 system by RF-reactive sputtering, J. Magn. Magn. Mater. 54, 1303 (1986).
40. 張天麟,Cr6+和Nb5+摻雜化學溶液鍍著法生長鉍鑭鈦薄膜鐵電性質影響, 成功大學材料科學及工程研究所碩士論文 (2004).
41. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chacogenides, Actra Cryst. 32, 751 (1976).
42. D. J. Connor, B. A. Sexton surface analysis methods in material science, 2nd ed. (Springer, New York, 2003).
43. 汪建民, 材料分析, 初版, (中國材料科學學會, 新竹, 1998).
44. H. S. Nalwa, Characterization and spectroscopy of thin film, (Academic press, New York, 2002).
45. W. K. Chu, Backscattering spectrometry, (Academic press, New York, 1978).
46. T. L. Barr, The principles and practice of X-ray photoelectron spectroscopy, (CRC Press Inc., Minnesota, 1994).
47. R. Ramesh, Thin film ferroelectric materials and devices, (Kluwer Academic Publishers, U.S.A, 1997).
48. J. F. Moulder, Handbook of X-ray photoelectron spectroscopy, (Inc., Minnesota, 1995).
49. H. J. Nam and D. K. Choi, Formation of hillocks in Pt/Ti electrodes and effects and their effects on short phenomena of PZT films deposited by reactive sputtering, Thin solid films 371, 564 (2000).