簡易檢索 / 詳目顯示

研究生: 郭承彰
Kuo, Cheng-Zhang
論文名稱: 以分子動力學模擬研究在軸向載荷下菊池圖譜演化
Molecular Dynamics Approach on the Relationship between Kikuchi Patterns and Axial Loading
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 129
中文關鍵詞: 分子動力學(MD)模擬高解析度電子背向散射繞射(HR-EBSD)電子繞射圖譜晶體旋轉晶體變形
外文關鍵詞: MD simulations, HR-EBSD, electron diffraction pattern, lattice rotation, lattice distortion
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Extended Abstract II 致謝 X 目錄 XII 圖目錄 XIV 表目錄 XX 第一章 前言 1 第二章 文獻回顧 2 2.1 高解析度電子背向散射繞射技術(HR-EBSD) 2 2.1.1 數位影像交互相關係數法(DIC) 6 2.1.2 HR-EBSD基礎理論 9 2.2 拉伸實驗及模擬 15 第三章 分子動力學(MD)模擬及菊池圖譜模擬 22 3.1 分子動力學(MD)模擬 23 3.1.1 差排分析法 (Dislocation Extraction Algorithm, DXA) 24 3.1.2 原子級應變 26 3.1.3 原子晶格方位 28 3.2 菊池圖譜模擬 31 3.2.1 模擬晶體旋轉之菊池圖譜 34 3.2.2 模擬晶體變形之菊池圖譜 39 3.3 DIC及HR-EBSD分析 41 第四章 模擬結果 51 4.1 分子動力學(MD)模擬結果 51 4.1.1 差排誘發之原子尺度晶體旋轉 51 4.1.2 差排誘發之原子尺度晶體變形 54 4.2 模擬晶體旋轉之菊池圖譜 63 4.2.1 RD轉動 63 4.2.2 TD轉動 65 4.2.3 ND轉動 66 4.3 模擬晶體變形之菊池圖譜 68 第五章 討論 70 5.1 試片座標軸旋轉對電子繞射圖譜之影響 70 5.2 差排誘發之原子尺度晶體旋轉與晶體變形 73 5.3 拉伸誘發晶體旋轉與晶體變形對電子繞射圖譜之影響 84 5.4 奈米拉伸與壓痕誘發晶體旋轉之比較 86 5.5 奈米拉伸與壓痕誘發晶體變形之比較 92 第六章 結論 99 參考文獻 101

    1. T.C. Chu, W.F. Ranson, M.A. Sutton, W.H. Peters, Applications of digital image-correlation techniques to experimental mechanics, Exp. Mech. 25 (1985) 232–240.
    2. A.J. Wilkinson, G. Meaden, D.J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity, Ultramicroscopy 106 (2006) 307–313.
    3. T.B. Britton, A.J. Wilkinson, Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction, Ultramicroscopy 111 (2011) 1395–1404.
    4. T.B. Britton, A.J. Wilkinson, High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations, Ultramicroscopy 114 (2012) 82–95.
    5. J. Wu, D. R. Mason, F. Granberg, Atomistic study of irradiation-induced plastic and lattice strain in tungsten. Computational Materials Science, vol. 251, (2025), p. 113738.
    6. N.Q. Vo, R.S. Averback, P. Bellon, S. Odunuga, and A. Caro, Quantitative Description of Plastic Deformation in Nanocrystalline Cu: Dislocation Glide versus Grain Boundary Sliding. Physical Review B, vol. 77, no. 13, (2008), p. 134108.
    7. J.F. Panzarino, J.J. Ramos, T.J. Rupert. Quantitative Tracking of Grain Structure Evolution in a Nanocrystalline Metal during Cyclic Loading. Modelling and Simulation in Materials Science and Engineering, vol. 23, no. 2, (2015), p. 025005.
    8. S.I. Wright, M.M Nowell, D.P. Field , A Review of Strain Analysis Using Electron Backscatter Diffraction, Microscopy and Microanalysis, vol. 17, (2011), p. 316–329.
    9. Z. He, M. Sutton, W. Ranson, W. Peters, Two-dimensional fluid-velocity measurements by use of digital-speckle correlation techniques, Exp. Mech. 24 (1984) 117–121.
    10. A.J. Wilkinson, A new method for determining small misorientations from electron back scatter diffraction patterns, Scr. Mater. 44 (2001) 2379–2385.
    11. I. Chasiotis, W.G. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Exp. Mech. 42 (2002) 51–57.
    12. D. Wallis, L.N. Hansen, A.J. Wilkinson, High angular resolution electron backscatter diffraction: Application to olivine dislocation analysis, Ultramicroscopy 168 (2017) 34–45.
    13. T. Vermeij, J.P.M. Hoefnagels, A consistent full-field integrated DIC framework for HR-EBSD, Ultramicroscopy 191 (2018) 44–50.
    14. D. Wallis, L.N. Hansen, T.B. Britton, A.J. Wilkinson, High-angular resolution electron backscatter diffraction as a new tool for mapping lattice distortion in geological minerals, J. Geophys. Res. Solid Earth 124 (2019) 6337–6359.
    15. 劉宜旻, 影像交互相關EBSD技術應用於晶體旋轉量測之準確性與限制, 國立成功大學碩士論文, 2023.
    16. H. Dong, J.C. Zhu, Z.H. Lai, L. Yong, R.D. Zhao, X.W. Yang, Study of fcc metal tension behaviour by crystal plasticity finite element method, Mater. Sci. Technol. 28 (2012) 788–793.
    17. S. Xu, Y.-F. Guo, Z.-D. Wang, Deformation mechanism of the single-crystalline nano-Cu films: Molecular dynamics simulation, Computational Materials Science. 67 (2013) 140–145.
    18. P. Chen, S.C. Mao, Y. Liu, F. Wang, Y.F. Zhang, Z. Zhang, X.D. Han, In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation, Mater. Sci. Eng. A 580 (2013) 114–124.
    19. M. Wroński, K. Wierzbanowski, Lattice rotation definition and predicted textures of tensile and compression deformation, Arch. Metall. Mater. 61 (2016) 1529–1536.
    20. X. Gao, Z. Zhang, L. Liu, C. Tao, Lattice rotation and deformation mechanisms under tensile loading in a single-crystal superalloy with [001] misorientation, Materials 17 (2024) 1368.
    21. B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31 (1959) 459–466.
    22. D. Hull, D.J. Bacon, Introduction to Dislocations, 5th ed., Butterworth-Heinemann/Elsevier, (2011) 17–19.
    23. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, vol. 18, (2010) 015012.
    24. V. Randle, Microtexture Determination and its Applications, The Institute of Materials, London, (1992).
    25. H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Butterworths, (1982) 4–5.
    26. Q. Shi, H. Zhong, D. Loisnard, L. Wang, C. Zhe, H. Wang, S. Roux, Enhanced EBSD calibration accuracy based on gradients of diffraction patterns, Mater. Charact. 202 (2023) 113022.
    27. 陳偉杰, 結合分子模擬與高解析背向散射電子繞射技術探討奈米薄膜壓痕塑性變形機制, 國立成功大學碩士論文, 2025.
    28. W.-C. Chen, C.-Z. Kuo, I.-L. Chang, S.-H. Tung, J.-C. Kuo, Exploring Lattice Rotation and Distortion on Kikuchi Patterns during Nanoindentation: MD Simulation Approach. Materials Characterization, vol. 225, (2025) 115170.
    29. D. Wallis, L.N. Hansen, T.B. Britton, A.J. Wilkinson, Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction, Ultramicroscopy 168 (2016) 34–45.
    30. S. Das, H. Yu, K. Mizohata, E. Tarleton, F. Hofmann, Modified deformation behaviour of self-ion irradiated tungsten: A combined nano-indentation, HR-EBSD and crystal plasticity study, Int. J. Plast. 135 (2020) 102817.
    31. T.B. Britton, A.J. Wilkinson, Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band, Acta Mater. 60 (2012) 5773–5782.
    32. L. Chevalier, S. Calloch, F. Hild, Y. Marco, Digital image correlation used to analyze the multiaxial behavior of rubber-like materials, J. Mech. Solids 20 (2001) 169–187.
    33. S.-H. Tung, M.-H. Shih, J.-C. Kuo, Application of digital image correlation for anisotropic plastic deformation during tension testing, Opt. Lasers Eng. 48 (2010) 636–641.
    34. J.-C. Kuo, S.-H. Tung, M.-H. Shih, Y.-Y. Lu, Characterisation of indentation-induced pattern using full-field strain measurement, Strain 46 (2010) 277–282.
    35. J.-C. Kuo, H.-H. Wang, Determination of residual strain by combining EBSD and DIC techniques, Int. J. Mater. Prod. Technol. 37 (2010) 328–337.
    36. 王翰弘, 以電子繞射量測殘留應變與其應用, 國立成功大學碩士論文, 2007.
    37. 羅力友, 背散射電子繞射分析技術:殘留應變與差排密度之量測, 國立成功大學碩士論文, 2010.
    38. T.J. Ruggles, D.T. Fullwood, Estimations of bulk geometrically necessary dislocation density using high resolution EBSD, Ultramicroscopy 133 (2013) 8–15.
    39. T.B. Britton, C. Maurice, R. Fortunier, J.H. Driver, A.P. Day, G. Meaden, D.J. Dingley, K. Mingard, A.J. Wilkinson, Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns, Ultramicroscopy 110 (2010) 1443–1453.
    40. C. Maurice, S. Villert, X. Wyon, On solving the orientation gradient dependency of high angular resolution EBSD, Ultramicroscopy 113 (2012) 171–181.
    41. T. Jäpel, Feasibility study on local elastic strain measurements with an EBSD pattern cross correlation method in elastic-plastically deforming materials, Dissertation, Rheinisch-Westfälischen Technischen Hochschule Aachen, Central Facility for Electron Microscopy, 2014.
    42. Z. Huang, D. Wen, Y. Xu, Q. Guo, Z. Chen, X. Jiang, A. Wang, Y. Li, B. Zhou, X. Hou, B. Wang, Dislocation slips assisted grain rotation and specific texture evolution in a CoCrNi medium entropy alloy, Mater. Sci. Eng. A 890 (2024) 145897.
    43. G. Winther, Slip systems extracted from lattice rotations and dislocation structures, Acta Mater. 56 (2008) 1919–1932.
    44. J.-C. Kuo, I.-H. Huang, Extraction of plastic properties of aluminum single crystal using Berkovich indentation, Mater. Trans. 51 (2010) 2104–2108.
    45. Z.H. He, M.A. Sutton, W.F. Ranson, W.H. Peters, Two-dimensional fluid velocity measurements by use of digital-speckle correlation techniques, Exp. Mech. 24 (1984) 117–121.
    46. P.G. Callahan, M. De Graef, Dynamical electron backscatter diffraction patterns. Part I: Pattern simulations, Microsc. Microanal. 19 (2013) 1255–1265.
    47. G. Nolze, T. Tokarski, G. Cios, and A. Winkelmann, Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns. Journal of Applied Crystallography, (2020) 53: pp. 435-443.

    無法下載圖示 校內:2030-07-24公開
    校外:2030-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE