簡易檢索 / 詳目顯示

研究生: 施雅云
Shih, Ya-Yun
論文名稱: 廢脫硝觸媒中鉬及釩之資源化研究
Recovery of Molybdenum and Vanadium from Spent SCR Catalysts
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: SCR觸媒離子交換除砷
外文關鍵詞: spent SCR catalyst, molybdenum, vanadium, ion exchange, remove arsenic
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將廢觸媒粉末經鹼焙燒及熱水浸漬處理後,鉬之浸出率為 98%,釩之浸出率為 99%,砷之浸出率為 95%。
    利用浸漬液中不同金屬離子對強鹼型陰離子交換樹脂的親和力大小順序可將Mo吸附與大部分V、 P、 As 、Si 、Al分離。以銨鹽脫附劑可解析富集Mo。在離子交換串柱操作條件下Mo之回收率接近100%。含Mo解析液經加入鎂鹽除As後,Mo之損失率僅0.15%,而除As率達100%。除As後解析液中過量之Mg以陽離子樹脂去除,除Mg率達100%,Mo無損失。純化後解析液經蒸發結晶,可產製七鉬酸銨產品,純度為Mo=98wt%、V=0.53wt%、As=0wt%,達到除As的目的。整體操作Mo之回收率為97%。
    交換尾液利用不同金屬離子對強鹼型陰離子交換樹脂的親和力大小順序可將V可與大部分P、 As 、Si 、Al分離。以銨鹽脫附劑可解析富集V,在離子交換串柱操作條件下V之回收率接近100%。解析液靜置後,釩以偏釩酸銨形態析出,沉澱率=97%。產品純度Mo=0 wt %、V=99.5wt% 、As=0.28wt%,整體操作V之回收率為96%。

    This study demonstrates the combination of the two unit processes to recover molybdenum and vanadium from involving high arsenic spent SCR catalysts. Those two unit processes are NaOH roasting-hot water leaching and ion exchange. The leaching rate of molybdenum, vanadium, and arsenic is 98%, 99% and 95%, respectively.
    Through the affinity of the different metal ions in the impregnated solution by the strong base type anion exchange resin, we can resolve Mo. Then, desorb Mo with ammonium salt, the recovery of Mo is close to 100% under consecutive column. Mo loss only 0.15% after adding magnesium salt at Mo enrichment solution, and As can be removed 100%. Excessive Mg in the desorption solution is removed by cationic resin. The removal rate is 100%, and Mo isn’t loss. After purification, the desorption solution is crystallized by evaporation to produce (NH4)6Mo7O24. The product purity of Mo = 98 wt%, V = 0.53 wt% and As = 0 wt%. The overall recovery of Mo can reach 97%.
    Through the affinity of the different metal ions in the impregnated solution by the strong base type anion exchange resin, we can resolve V from ion exchange solution. Then, desorb V with ammonium salt, the recovery of V is close to 100% under consecutive column. After static for a day, the desorption solution is crystallized to produce NH4VO3. The product purity of Mo = 0 wt%, V = 99.5 wt% and As = 0.28 wt%. The overall recovery of Mo can reach 96%.

    摘要 I 致謝 VI 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 脫硝SCR廢觸媒 3 2-1-1 脫硝SCR廢觸媒基本原理 3 2-1-2 脫硝SCR廢觸媒的來源及組成 4 2-1-3 催化劑的失活 5 2-1-4 選擇性催化還原法的應用 6 2-2 脫硝SCR廢觸媒的資源化技術 7 2-3預處理 7 2-4浸漬 9 2-5離子交換法 9 2-5-1 離子交換樹脂 10 2-5-2管柱中離子交換過程 22 2-5-3 吸附原理 25 2-5-4 離子交換熱力學及動力學 29 2-6 物種分佈圖 34 2-6-1 鉬物種 34 2-6-2 釩物種 36 2-6-3 砷物種 38 2-7 離子交換分離與回收方法 39 2-7-1 鉬回收 39 2-7-2 釩回收 40 2-7-3 鉬釩分離 40 第三章 實驗設備及流程 42 3-1 實驗材料及設備 42 3-1-1 實驗材料 42 3-1-2 實驗設備 44 3-2 實驗流程 46 3-3實驗方法及步驟 47 第四章 結果與討論 50 4-1 V2O5/MoO3/TiO2廢觸媒鹼焙燒及熱水浸漬條件 50 4-2 樹脂吸附批次熱力學及動力學實驗 51 4-2-1 IRA900Cl樹脂對Mo/V/As之等溫吸附曲線 51 4-2-2 IRA900Cl樹脂對Mo/V之等溫吸附模型 52 4-2-3 IRA900Cl樹脂對Mo/V吸附動力學研究 55 4-3樹脂吸附管柱實驗 63 4-3-1 浸漬液pH值對IRA900Cl樹脂吸附鉬之影響 63 4-3-2 浸漬液濃度對IRA900Cl樹脂吸附鉬之影響 65 4-3-3 操作BV數對IRA900Cl樹脂吸附鉬之影響 67 4-3-4 不同進料流速對IRA900Cl樹脂吸附鉬效率之影響 68 4-3-5 IRA900Cl樹脂吸附鉬之最佳條件 70 4-4 樹脂之脫附實驗 71 4-4-1脫附劑選擇及脫附曲線 71 4-5脫附液的淨化 73 4-5-1 氯化鎂除磷、砷 73 4-5-2 IRC747樹脂除鎂 74 4-6 鉬產品製備 75 4-7交換尾液回收V之實驗 76 4-7-1 進料pH值對IRA900Cl樹脂吸附釩之影響 76 4-7-2 進料流速對IRA900Cl樹脂吸附釩之影響 83 4-8 V/As於IRA900樹脂之脫附實驗 85 4-9 釩產品製備 86 4-10 廢SCR觸媒中鉬及釩之資源化研究流程 89 結論 90 參考文獻 91

    [1] 陳其顥、朱林,“SCR失效催化劑及其處置與再利用技術”,電力科技與環保,第28卷,第3期,2012。
    [2] 林永茂,“SCR脫硝技術應用”,合肥季刊,第54卷,第3期,2013。
    [3] 山東鴻創環保有限公司。
    [4] 曾志富,“研習SCR 觸媒材料生產製造及性能測試”,台灣電力公司綜合研究所,2017。
    [5] Shikada, T, K. Fujimoto, T. Kunugi, H. Tominaga, S. Kanekoand, Y. Kubo, “Reduction of Nitric Oxide with Vanadium Oxide Catalysts Supported on Homogeneously Precipitated Silica-Titania”, Ind. Eng. Chem. Prod. Res, Vol.20, p.91-95, 1981.
    [6] 盧裕倉,“以觸媒氧化法處理含揮發性有機物煙道氣之研究”,國立中山大學環境工程研究所碩士論文,1999。
    [7] 金屬材料的製備-冶金,2015。
    [8] 蘇英源、郭金國,“冶金學”,全華圖書公司,第2章11-14頁,2001。
    [9] 彭榮秋,“重金屬冶金學”,中南大學出版社,第1-15頁,1991。
    [10] 林偉凱、蔡潔娃,“金屬資源再生技術發展概況分析”,財團法人金屬工業研究發展中心,第10-12頁,2009。
    [11] 李洪桂,“溼法冶金學”,中南大學出版社,第30-55頁,2005。
    [12] 曾迪華,“工業污染防治技術手冊-工業廢水離子交換處理”,經濟部工業局、財團法人中國技術服務社工業污染防治技術服務團,臺北,1993。
    [13] 朱屯,“萃取與離子交換”,冶金工業出版社,第387-471頁,2005。
    [14] 丁桓如、吳春華、龔雲峰、聞人勤,“工業用水處理工程”,清華大學出版社,2005。
    [15] 楊守志,“Ion Exchange: Theory and Practice”, Royal Society of Chemistry Paperbacks Paperback,1994.
    [16] 王廣珠、汪德良、崔煥芳,“離子交換樹脂使用及診斷技術”,化學工業出版社,第12-14頁,2004。
    [17] Weber, W.J.Jr., “Physiconchemical processes for water quality control, Wiley-Interscience”, New York, 1972.
    [18] Helms, R.F., “Evaluation of ion exchange for demineralization of wastewater”, Master's Thesis,University of Colorado, Boulder,Co,1973.
    [19] 王九思、陳學民、肖舉強、伏小勇,“水處理化學”,化學工業出版社,第189-217頁,2002。
    [20] 李孫榮、張錦松、張錦輝、陳健民、曾如娟共譯,“環工單元操作”,高立圖書有限公司,1996。
    [21] A. Ognyanova , A.T. Ozturk , I. De Michelis , F. Ferella , G. Taglieri , A. Akcil , F. Vegliò , “Metal extraction from spent sulfuric acid catalyst through alkaline and acidic leaching”, Hydrometallurgy , 100(1-2), p.20–28, 2009.
    [22] 章裕民,“環境工程化學”,文京,臺北,1998:135-140。
    [23] 李孫榮、張錦松、張錦輝、陳健民、曾如娟共譯,“環工單元操作”,高立圖書有限公司,1996。
    [24] 陶祖貽,趙愛民,“離子交換平衡動力學”,北京原子能出版社,第81-84頁,1989。
    [25] 薑志新、湛竟清、宋正孝,“離子交換分離工程(第一版)”,天津大學出版社,第79-83頁,1992。
    [26] 李洪桂,“冶金原理”,科學出版社,第292-305頁,2005。
    [27] 薑志新,“離子交換動力學與應用(上冊)”,第64-69頁,1984。
    [28] Sehmuckler G, Nativ M, Goldstein S. “The Theory and Practice of Ion Exchange.”, London Society of chemical Industry, p.171-175, 1976.
    [29] Vermulen T. “Theory for irreversible and Constant-Pattern solid diffusion.”, Ind. Eng. Chem, p.1664-1670,1953.
    [30] Fleming C.A, et al, “Journal of the South African Institute of Mining and Metallurgy.”, p.2-9,1980.
    [31] Marczenko Z. and Balcerzak M., “Separation, Preconcentration an Spectrophotometry in Inorganic Analysis”, Elsevier , p.528, 2000.
    [32] Baes C.F., Mesmer R.E.,“ The Hydrolysis of Cations”, Wiley, New York, 1976.
    [33] Olazabal MA, Orive MM, Fernandez LA, Madariaga JM., “Selective extraction of vanadium (V) from solutions containing molybdenum (VI) by ammonium salts dissolved in toluene”,Solvent Extr Ion Exch. 10(4)p.623-635, 1992,
    [34] Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E.,“Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation”, Langmuir. p.1567-1573,18(5), 2002.
    [35] 申泮文、羅裕基,“無機化學叢書:鈦分族釩分族鉻分族”,北京科學出版社,第180頁,1998。
    [36] Li Zeng, Qinggang Li, Liansheng Xiao, “ Extraction of vanadium from the leach solution of stone coal using ion exchange resin ”Hydrometallurgy. 97(3-4), p.194-197, 2009.
    [37] 鄭彭年,“離子交換用於石煤提釩的探討”,工程設計與研究,第35-38頁,1992。
    [38] G. Brauer, “Arsenic Acid.” Handbook of Preparative Inorganic Chemistry 1 2nd. New York: Academic Press, 1963.
    [39] G. Brauer (Hrsg.), “Handbook of Preparative Inorganic Chemistry 2nd ed.”, vol. 1, Academic Press, 1963.
    [40] Naoto TAKENO, “Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases”, National Institute of Advanced Industrial Science and Technology, 2005.
    [41] 李青剛,“ 從鎳鉬礦中制取鉬酸銨的研究”,中南大學,2010。
    [42] 許曉陽,“離子交換法從鎳鉬礦浸出液提取鉬的研究”,中南大學,2011。
    [43] 萬洪強、 寧順明,“離子交換樹脂吸附釩的動力學研究”,長沙礦冶研究院,2010。
    [44] 高官金、彭毅、曹宏斌,“釩鉻溶液離子交換法提釩研究”,攀鋼集團研究院有限公司釩鈦資源綜合利用國家重點實驗室,2015。
    [45] 胡健、 王學文、肖連生、宋松如, “鉬酸鹽溶液離子交換鉬釩分離機理” ,中南大學冶金科學與工程學院,2008。
    [46] 謝佳穎,“以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究”,成功大學,碩士論文,2012。
    [47] Gabelich, J. C., Chen, W. R., Yun, T. I., Coffey, B. M. and Suffet, I. H., “The role of dissolved aluminum in silica chemistry for membrane processes”, Desalination, 180, p. 307-319,2005.

    無法下載圖示 校內:2022-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE