| 研究生: |
李威達 Li, Wei-Ta |
|---|---|
| 論文名稱: |
陰陽離子型液胞組成材料之混合單分子層中分子作用的探討 Investigation of molecular interactions in mixed monolayers composed of catanionic vesicle-forming materials |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 氣/液界面 、布魯斯特角顯微鏡 、單分子層 、離子對雙親分子 |
| 外文關鍵詞: | Brewster angle microscopy, monolayer, ion pair amphiphile, air/water interface |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討離子對雙親分子(ion pair amphiphile, IPA) hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS)與不同添加物於氣/液界面上所形成之混合單分子層的行為,所使用的添加物包含長碳鏈醇類(正十六碳醇與正十八碳醇)、膽固醇,以及雙十六碳二甲基溴化銨(dihexadecyldimethylammonium bromide,DHDAB)。藉由單分子層的表面壓-面積與表面電位-面積等溫線,遲滯與鬆弛曲線,以及布魯斯特角顯微鏡 (Brewster angle microscope,BAM) 影像,以了解混合單分子層中分子間之交互作用和氣/液界面上單分子層的穩定性。
對於HTMA-DS/長碳鏈醇類混合系統而言,等溫線顯示正十六碳醇與正十八碳醇的添加皆有凝縮雙鏈之HTMA-DS單分子層的作用,且可以降低碳氫鏈在氣/液界面上的傾斜角度。由熱力學的分析發現,添加這兩種長碳鏈醇類可提高單分子層中分子間的吸引力,使得混合後的單分子層具較佳的穩定性。此外,單分子層的遲滯與鬆弛行為顯示,長碳鏈醇類的添加能改善HTMA-DS單分子層於緊密狀態下的穩定性。單分子層形態的BAM觀測也證實,長碳鏈醇類的添加提升了分子間的吸引力,其中又以正十六碳醇的影響程度最為顯著。
就添加膽固醇的混合單分子層系統而言,等溫線與單分子層形態觀測均顯示,膽固醇在低表面壓下具有相當顯著的凝縮效應,並與HTMA-DS形成分子排列較緊密的液態規則相。熱力學的分析則顯示,膽固醇與長碳鏈醇類一樣具有提升分子間吸引力的作用,且能調節分子的排列行為。然而,由單分子層的鬆弛行為發現,膽固醇的添加並無法有效地提升HTMA-DS單分子層於氣/液界面上的穩定性。
至於HTMA-DS/DHDAB混合單分子層系統,XHTMA-DS = 0.5之單分子層的等溫線呈現不合理的分子極限佔據面積,顯示氣/液界面上有分子損失的情況發生。藉由設計的實驗發現,混合單分子層中的DHDA+會取代HTMA-DS中的HTMA+,並與DS-形成DHDA-DS的新型IPA分子。被取代的HTMA+則傾向脫附至水相中,因而造成界面上分子的損失。此外,由單分子層的鬆弛行為得知,DHDAB的添加與HTMA+的被取代行為,有助於提升單分子層於緊密狀態下的穩定性。單分子層形態的BAM影像則顯示,在非等莫耳比例混合的單分子層中有相分離的現象,也證實了混合單分子層中HTMA+的被取代行為及DHDA-DS的生成。
Monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with various additives including long-chain alcohols (n-hexadecanol, HD, and n-octadecanol, OD), cholesterol, and dihexadecyldimethylammonium bromide (DHDAB) at the air/water interface was investigated. With surface pressure-area and surface potential-area isotherms, hysteresis and relaxation curves, and Brewster angle microscope (BAM) images, molecular interaction in the monolayers and the monolayer stability at the interface were then elucidated.
For the mixed HTMA-DS/long-chain alcohol systems, the isotherms indicated that the addition of HD or OD led to a condensing effect on a double-chained HTMA-DS monolayer, resulting in a small tilt angle of the hydrocarbon chains at the air/water interface. With the thermodynamic analysis, the enhanced attractive interaction between the molecules in the monolayers was found with the presence of the two long-chain alcohols, and better stability of the mixed monolayers was detected. Moreover, the monolayer hysteresis and relaxation curves suggested that the added long-chain alcohols could improve the stability of a HTMA-DS monolayer at condensed states. The enhanced attractive interaction between the molecules due to the addition of the long-chain alcohols was also confirmed by the BAM observations of the monolayer morphology, and HD seemed more effective as an additive than OD.
For the mixed monolayer system with cholesterol, the isotherms and morphology observations indicated that cholesterol exhibited a significant condensing effect at low surface pressures and formed with HTMA-DS a liquid-ordered phase with more compact molecular packing. The thermodynamic analysis implied that cholesterol as well as the two long-chain alcohols was able to enhance the attractive interaction between the molecules and adjust the molecular packing behavior in the mixed monolayers. However, it was found from the monolayer relaxation curves that the presence of cholesterol was unable to effectively improve the stability of a HTMA-DS monolayer at the air/water interface.
As for the mixed HTMA-DS/DHDAB monolayers, an unreasonable value of limiting area per molecule was obtained from the isotherm of the mixed monolayer with XHTMA-DS = 0.5, indicating the loss of monolayer-forming molecules at the air/water interface. By the designed experiments, it was found that in the mixed monolayer, DHDA+ could replace the HTMA+ of HTMA-DS, forming DHDA-DS, a new type of IPA molecule. The replaced HTMA+ tended to desorb into the water subphase, resulting in the loss of molecules at the interface. In addition, the monolayer relaxation curves suggested that the addition of DHDAB and the replaced behavior of HTMA+ were useful in enhancing the stability of the monolayers at condensed states. The BAM images of monolayer morphology demonstrated the occurrence of phase separation in the mixed monolayers with non-equimolar ratios, and also confirmed the displaced behavior of HTMA+ and the formation of DHDA-DS.
Adam, N. K., and Jessop, G., “Structure of films. XI. Oxygennated derivatives of benzene,” Proc. Roy. Soc., Ser. A, 120, 473, 1928.
Adamson, A. W. “Physical chemistry of surface,” 5th Edition, John Wiley and sons, New York, 1990.
Angelova, A., Vollhard, D., and Ionov, R., “2D-3D transformations of amphiphilic monolayers influences by intermolecular interactions: A Brewster angle microscopy study,” J. Phys. Chem., 100, 10710, 1996.
Bhattacharya, S., De, S., and Subramanian, M., “Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design,” J. Organic Chemistry, 63, 7640, 1998.
Bhattacharya, S., De, S., “Vesicle formation from dimeric ion-paired amphiphiles. Control over vesicular thermotropic and ion-transport properties as a function of intra-amphiphilic headgroup separation,” Langmuir, 15, 3400, 1999.
Bhattacharya, S., and Haldar, S., “Molecular design of surfactants to tailor its aggregation properties,” Colloids Surf. A: Physicochem., Eng. Aspects, 205, 119, 2002.
Birdi, K. S., “Lipid and Biopolymer Monolayers at Liquid Interface,”Plenum, New York, 1989.
Birdi, K. S., Self-assembly Monolayer Structures of Lipids and Macromolecules at Interfaces, Kluwer Academic/Plenum, New York, 1999, Chapter 2.
Blanzat, M., Perez, E., Rico-Latters, R., Prome, D., Prome, J. C., and Lattes, A., “New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and gemini catanionic analogues of galactosylceramide(galβ1cer),” Langmuir, 15, 6163, 1999.
Bramer, T., Dew, N., and Edsman, K., “Pharmaceutical applications for catanionic mixtures,”J. Pharmacy Pharmacology, 59, 1319, 2007.
Cademhead, D. A., and Mller-Laudau, F., “Molecular accommodation and molecular interactions in mixed insoluble monomolecular films,”J. Colloid Interface Sci., 78, 269, 1980.
Cavalli, A., Dynarowicz-Łątka, P., Oliverira Jr., O. N., and Feitosa, E., “Using an effective surface charge to explain surface potentials of Langmuir monolayers from dialkylmethylammonium halides with Gouy-Chapman theory,” Chem. Phys. Letters, 338, 88, 2001.
Chattoraj, D. K. and Birdi, K. S., “Adsorption and the Gibbs surface excess,” Plenum, New York, 1984.
Chung, M. H., and Chung, Y. C., “Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Colloids Surf. B: Biointerfaces, 24, 111, 2002.
Chung, M. H., Park, M. J., Chun, B. C., and Chung, Y.C. “Encapsulationand permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Colloids Surf. B: Biointerfaces, 28, 83, 2003.
Chung, M. Y., Chung, Y. C., and Chun, B. C., “Highly pH-sensitive ion pair amphiphile vesicle,” Colloids Surf. B: Biointerfaces 29, 75, 2003.
Chung, M. H., Park, C., Chun, B. C., and Chung, Y. C., “Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property,” Colloids Surf. B: Biointerfaces, 34, 179, 2004.
Demchak, R.J., and Fork, W.D., Jr., “Surface dipole moments of close-packed monolayers at the air-water interface,” J. Colloid Interface Sci., 46, 191, 1974.
Devaraj, G. N., Parakh, S. R., Devraj, R., Apte, S. S., Rao, B. R., and Rambhau, D., “Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol,” J. Colloid Interface Sci., 251, 360, 2002.
Dynarowicz, P., Romeu, N. V., and Trillo, J. M. “Stability of dialkyldimethylammonium bromide monolayers spread at the water/air interface,” Colloids Surf. A: Physicochem. Eng. Aspects 131, 249, 1998.
Dynarowicz-Łątka, P., Dhanabalan, A., and Oliverira., O. N. Jr., “Modern physicochemical research on Langmuir monolayers,” Adv. Colloid Interface Sci., 91, 221, 2001.
Fainerman, V.B., Vollhard, D., and Emrich, G., “Dynamics and phase transition in adsorbed monolayers of sodium dodecyl sulfate/dodecanol mixtures,” J. Phys. Chem. B, 105, 4324, 2001.
Fainerman, V.B., Zhao, J., Vollhard, D., Makievski, A.V., and Li, J.B., “Dynamics of β-lactoglobulin penetration into Langmuir monolayers of 2D condensating phospholipid,” J. Phys. Chem. B, 103, 8998, 1999.
Fukuda, H., Kawata, K., and Okuda, H., “Bilayer-forming ion-pair amphiphiles from single-chain surfactants,” J. Am. Chem. Soc., 112, 1635, 1990.
Fuller, G. M., and Shield, D., Molecular Basis of Medical Cell Biology, McGraw-Hill, New York, 1998.
Gaines, G. L. Jr., in “Insoluble monolayers at liquid-gas interface,” Wiley Press: New York, 1966, Chapter 6.
Gehlert, U., and Vollhardt, D., “Nonequlibrium structures in 1-monopalmitoyl-rac-glycerol monolayers,” Langmuir, 13, 277, 1997.
Gehlert, U., Weidemann, G., and Vollhardt, D., “Morphological features in 1-monoglyceride monolayers,” J. Colloid Interface Sci., 174, 392, 1995.
Gershfeld, N. L. and Pagano, R. E., “Physical chemistry of lipid films at the air-water interface. III. The condensing effects of cholesterol. A critical examination of mixed-film studied,” J. Phys. Chem., 76, 1244, 1972.
Gilnyi, T., Mszros, R., and Varga, I., “Phase transition in the adsorbed layer of catanionic surfactants at the air/solution interface,” Langmuir, 16, 3200, 2000.
Gonalves da Silva, A. M., and Viseu, M. I., “Synergism in mixed monolayers of cationic and anionic surfactants. A thermodynamic analysis of miscibility at the air-water interface” Colloids Surf. A: Physicochem. Eng. Aspects, 144, 191, 1998.
Gonalves da Silva, A. M., Viseu, M. I., Campos, C.S., and Rechena, T., “Effect of the spreading procedure on the formation of cationic-anionic mixed monolayers,” Thin Solid Films, 320, 236, 1998.
Goodrich, F. C., in “Proceedings of the second internaional congress of surface activity,” Schulman, J. H., Ed.; Butterworths Press: London, 1957; vol 1., p85.
Gyrary, E., Albers, W.M., and Petonen, J., “Miscibility in binary monolayers of phospholipid and linker lipid,” Langmuir, 15, 2516, 1999.
Hąc-Wydro, K., Wydro, P., and Dynarowicz-Łątka, P., “Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols-a monolayer study,” J. Colloid Interface Sci., 286, 504, 2005.
Hnon, S., and Meunier, J., “Microscope at Brewster angle: direct observation of first-order phase transitions in monolayers,” Rev. Sci. Chem., 62, 936, 1991.
Hirano K., and Fukuda, H., “Polymerizable ion-paired amphiphiles,” Langmuir, 7, 1045, 1991.
Hnig, D., and Mbius, D., “Direct visualization of monolayers at the air-water interface by Brewster angle microscopy,” J. Phys. Chem., 95, 4590, 1991.
Hossain, Md. M., and Kato, T., “Line tension induced instability of condensed domains formed in adsorbed monolayers at the air-water interface,” Langmuir, 16, 10175, 2000.
Iimura, K., Yamauchi, Y., Tsuchiya, Y., Kato, T., and Suzuki, M., “Two-dimensional dendritic growth of condensed phase domains in spread monolayers of cis-unsaturated fatty acids,” Langmuir, 17, 4602, 2001.
Islam, Md. N., and Kato, T., “Influence of temperature and alkyl chain length on phase behavior in Langmuir monolayers of some oxyethylenated nonionic surfactants,” J. Colloid Interface. Sci., 294, 288, 2006.
Kang, Y. S., Oh, Y. O., and Choi, J.H., “Langmuir behaviors of the complex of anionic and cationic surfactants at the air/water interface,” Synthetic Metals, 117, 173, 2001.
Katholy, S., Reiche, J., and Brehmer, L., “Texture of fatty acid Langmuir films studied by means of Brewster angle reflectometry,” Colloids Surf. A: Physicochem. Eng. Aspects, 171, 87, 2000.
Kim, Y.-H., Tero, R., Takizawa, M., and Urisu, T., “Characterization of dipalmitoylphosphatidylcholine/cholesterol Langmuir-Blodgett monolayers investigated by atomic force microscopy and Fourier transform infrared spectroscopy,” Jap. J. Appl. Phys., 43, 3860, 2004.
Lasic, D. D., Liposomes: From Physics to Applications, Elsevier, New York, 1993.
Lasic, D. D., in: M. Rosoff, (ed.), Vesicles, Marcel Dekker, New York, 1996, Chapter 10.
Lasic, D. D., Liposomes in gene delivery, CRC Press, New York, 1997.
Lasic, D. D., and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Solid State and Materials Science, 1, 392, 1996.
Lawrie, G.A., Gentle, I.R., and Barnes, G.T., “The structure of mixed monolayer films of DPPC and hexadecanol,” Colloids Surfaces A: Physicochem. Eng. Aspects, 171, 217, 2000.
Lee, K. Y. C., Gopal, A., Nahmen, A. V., Zasadzinski, J. A., Majewski, J., Smith, G. S., Howes, P. B., and Kjaer, K., “Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface,” J. Chem. Phys., 116, 774, 2002.
Lheveder, C., Henon, S., and Meunier, J., in Physical Chemistry of Biological Interfaces, A. Baszkin and W. Norde, eds., Marcel Dekker, New York, 2000, Chapter 16.
Lsche, M., Sackmann, E., and Mhwald, H., “A fluorescent study concerning the phase diagram of phospholipids,” Bre Busenges Phys. Chem., 87, 848, 1983.
Ma, G., and Allen, H. C., “Condensing effect of palmitic acid on DPPC in mixed monolayers,” Langmuir, 23, 589-597, 2007.
Mabrey, S., Sturtevant, J. M., “Incorporation of saturated fatty acids into phosphatidylcholine bilayers,” Biochim. et Biophis. Acta, 486, 444, 1977.
MacDonald, R. C., in: M. Rosoff, (ed.), Vesicles, Marcel Dekker, New York, 1996, Chapter 1.
Marques, E. F., Brito, R. O., Wang, Y., and Silva, B. F. B., “Thermotropic phase behavior of triple-chained cataionic surfactants with varying headgroup chemistry,” J. Colloid Interface Sci., 294, 240, 2006.
Marques, E. F., Regev, O., Khan, A., and Lindman, B.,“Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Adv. Colloid Interface Sci., 100,83, 2003.
Mattjus, P., Bittman, R., Vilchze, C., and Slotte, J. P., “Lateral domain formation in cholesterol/phospholipids monolayers as affected by the sterol side chain conformation,” Biochim. et Biophys. Acta, 1240, 237, 1995.
McConnell, H. M., and Koker, R. D., “Equilibrium thermodynamics of lipid monolayer domain,” Langmuir, 12, 4897, 1996.
McConlogue, C. W., Malamud, D., and Vanderlick, T. K., “Interaction of DPPC monolayer with soluble surfactants: electrostatic effects of membrane perturbants,” Biochim. Biophys. Acta-Biomembranes, 1372, 124, 1998.
McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N. “Differential scanning calorimetric study of the effect of choleaterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholine,” Biochemistry, 32, 516, 1993.
McMullen, T. P. W., Vilchze, C., McElhaney, R. N., and Bittman, R. “Differential scanning calorimetric study of the effect of sterol side chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behavior, ” Biophys. J., 69, 169, 1995.
McQuaw, C. M., Sostarecz, A. G., Zheng, L., Ewing, A. G., and Winograd, N., “Lateral heterogeneity of dipalmitoylphosphatidylethanolamine- cholesterol Langmuir-Blodgett films investigated with imaging time-of-flight secondary ion mass spectrometry and atomic force microscopy,” Langmuir, 21, 807, 2005.
Menger, F. M., Binder, W. H., and Keiper, J. S., “Cationic surfactants with counterions of glucuronate glycosides,” Langmuir, 13, 3247-3250, 1997.
Meunier, J. “Why a Brewstrer angle microscope?” Colloids Surfaces A: Physicochem. Eng. Aspects, 171, 33, 2000.
Myers, D., Surfaces, Interfaces, and Colloids: Principles and Applications, VCH, 1999, Chapter 8.
New, R. R. C., Liposomes: A Practical Approach, Oxford University Press, New York, 1990, Chapter 1.
Ohvo-Rekil, H., Mattjus, P., and Slotte, J. P. “The influence of hydrophobic mismatch on androsterol/phosphatidylcholine interactions in model membranes,” Biochim. Biophys. Acta, 1372, 331, 1998.
Oliverira, O.N., Jr., and Bonardi, C., “ The surface potential of Langmuir monolayers revisited,” Langmuir, 13, 5920, 1997.
Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K., and Moulik, S. P., “Physico-chemical studies on mixed oppositely charged surfactants: Their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface,” Colloids Surfaces A: Physicochem. Eng. Aspects, 264, 106, 2005.
Patist, A., Chhabra, V., Pagidipati, R., Shan, R., and Shan, D. O., “Effect of chain length compatibility on micellar stability in sodium sulfate/alkyltrimethylammonium bromide solutions,” Langmuir, 13, 432, 1997.
Penacorada, F., Reiche, J., Katholy, S., Brehmer, L., and Rodriguez-Mendez, M.L., “Monolayers and multilayers of uranyl arachidate. 1. Study of the interaction of dissolved uranyl ions with arachidic acid Langmuir monolayers,” Langmuir, 11, 4025, 1995.
Perković, S., and McConnel, H.M., “Cloverleaf monolayer domains,” J. Phys. Chem. B, 101, 381, 1997.
Ramos, S., and Castillo, R., “Langmuir monolayer of C17, C19, and C21 fatty acids: texture, phase transitions, and localized oscillations,” J. Chem. Phys., 110, 7021, 1999.
Regev, O., and Khan, A., “Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems,” J. Colloid Interface Sci., 182, 95, 1996.
Romo, R. I. S., and Gonalves da Silva, A. M., “Phase behavior and morphology of binary mixtures of DPPC with stearonitrile, stearic acid, and octadecanol at the air-water interface,” Chem. Phys. Lipids, 131, 27, 2004.
Rosen, M. J., Surfactants and Interfacial Phenomena, 3rd ed., John Wiley and Sons, 2004.
Salkar, R. A., Mukesh, D., Samant, S. D., and Manohar, C., “Mechanism of micelle to vesicle transition in cationic-anionic surfactant mixtures,” Langmuir, 14, 3778, 1998.
Shah, D. O., and Schulman, J. H., “Influence of calcium, cholesterol, and unsaturation on lecithin monolayers,” J. Lipid Res., 8, 215, 1967.
Shibata, O., Yamamoto, M., Sasaki, Y., Lee, S., and Sugihara, G., “Mixed monolayer properties of tetradecanoic acid with n-perfluorocarboxylic acid with 10, 12, 14, 16, and 18 carbon atoms,” J. Colloid Interface Sci., 184, 201, 1996.
Siegel, S., and Vollhardt, D., “Foam-like patterns in myristyl alcohol monolayers,” Colloids Surfaces A: Physicochem. Eng. Aspects, 116, 195, 1996a.
Siegel, S., and Vollhardt, D., “Line tension and domain shapes in insoluble monolayers of fatty alcohols,” Thin Solid Films, 284-285, 424, 1996b.
Slotte, J. P., Jungner, M., Vilchze, C., and Bittman, R., “Effect of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles,” Biochim. Biophys. Acta, 1190, 435, 1994.
Su, Y., Li, Q., Chen, L., and Yu, Z. “Condensation effect of cholesterol, stigmasterol, and sitosterol on dipalmitoylphosphatidylcholine in molecular monolayers,” Colloids Surfaces A: Physicochem. Eng. Aspects, 293, 123, 2007.
Taylor, D. M., “Developments in the theoretical modeling and experimental measurement of the surface potential of condensed monolayers,” Adv. Colloid Interface Sci., 87, 183, 2000.
Teixeira, C. V., Blanzat, M., Koetz, J., Rico-Lattes, I., and Brezesinski, G., “In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids,” Biochim. Biophys. Acta, 1758, 1797, 2006.
Tondre, C., and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Adv. Colloid Interface Sci., 93, 115, 2001.
Vilchze, C., McMullen, T. P. W., McElhaney, R. N., and Bittman, R. “The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoylphosphatidylcholine bilayers: a differential scanning calorimetric study,” Biochim. Biophys. Acta, 1279, 235, 1996.
Viseu, M. I., Gonalves da Silva, A. M., and Costa, S. M. B., “Reorganization and desorption of catanionic monolayers. Kinetics of π-t and A-t relaxation,” Langmuir, 17, 1529, 2001.
Vogel, V., and Mbius, D., “Local surface potential and electric dipole moments of lipid monolayers: Contributions of the water/lipid and the lipid/air interface,” J. Colloid Interface Sci., 126, 408, 1988.
Vollhardt, D., Gutberlet, T., Emrich, G., and Fuhrhop, J.H., “Dendritic crystal growth in n-dodecylgluconamide monolayers at the air-water interface,” Langmuir, 11, 2661, 1995.
Vollhardt, D., Emrich, G., Siegel, S., and Rudert, R., “Phase transition in monolayers of straight chain and 2-methyl branched alcohols at the air-water interface,” Langmuir, 18, 6572, 2002.
Weidemann, G., Brezesinski, G., Vollhardt, D., DeWolf, C, and Mhwald, H., “Disorder in Langmuir monolayers: 2. Relation between disordered alkyl chain packing and the loss of long-range tilt orientational order,” Langmuir, 15, 2901, 1999.
Weidemann, G., and Vollhardt, D., “Long range tilt orientation order in phospholipid monolayers: a comparison of the condensed phase of dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidyl- choline,” Colloids Surfaces A: Physicochem. Eng. Aspects, 100, 187, 1995a.
Weidemann, G., and Vollhardt, D., “Long-range tilt orientation order in phospholipid monolayers: the innter structure of dimyristoyl- phosphatidylethanolamine domains,” Thin Solid Films, 264, 94, 1995b.
Weidemann, G., and Vollhardt, D., “Long-range tilt orientation order in fatty acid ethyl ester monolayers,” Langmuir, 12, 5114, 1996.
Worthman, L. A. D., Nag, K., Davis, P. J., and Keough, K. M. W. “Cholesterol in condensed and fluid phosphatidylcholine monolayers studies by epifluorescence microscopy,” Biophys. J., 72, 2569, 1997.
Wu, S., and Huntsberger, J. R., “Intermolecular interaction in some mixed polymer monolayers at the air water interface,” J. Colloid Interface Sci., 29, 138, 1969.
Yang, J., and Fendler, J.H., “Morphology control of PbS nanocrystallites, epitaxially grown under mixed monolayers,” J. Phys. Chem., 99, 5505, 1995.
Yuet, P. K., and Blankschtein, D., “Effect of surfactant tail-length asymmetry on the formation of mixed surfactant vesicles,” Langmuir, 12, 3819, 1996.
吳國彰,“陰陽離子液胞穩定性及包覆/釋放行為的研究,” 國立成功大學化學工程學系碩士論文,2006。
李雅鈺,“含膽固醇之陰陽離子液胞穩定性及包覆行為的研究,” 國立成功大學化學工程學系碩士論文,2004。
周宗翰,“含DPPC之混合單分子層的分子間交互作用,”國立成功大學化學工程學系碩士論文,1999。
林郁舜,“在氣液界面上陰/陽離子混合界劑單分子層行為的研究,”國立成功大學化學工程學系碩士論文,2003。
林冠豪,“帶電的陰陽離子液胞之製備及物理穩定性研究,” 國立成功大學化學工程學系碩士論文,2004。
徐立銘,“陰陽離子液胞包覆行為之探討,” 國立成功大學化學工程學系碩士論文,2002。
陳凱斌,“在氣液界面上DPPC/長碳鏈醇類混合單分子層的行為,”國立成功大學化學工程學系博士論文,2002。
陳柏瑋, “白蛋白存在下帶正電陰陽離子液胞穩定性的探討,” 國立成功大學化學工程學系碩士論文,2007。
黃鉦琳,“帶電陰陽離子液胞的形成及其膠化之研究,”國立成功大學化學工程學系碩士論文,2007。
葉紹任,“共溶劑對陰陽離子液胞穩定性的影響,”國立成功大學化學工程學系碩士論文,2003。
簡振龍,“陰/陽離子界面活性劑的混合增效作用之研究,”國立成功大學化學工程學系碩士論文,2000