簡易檢索 / 詳目顯示

研究生: 薛志馨
Hsueh, Chih-Hsin
論文名稱: 二維光子晶體能隙特性之研究
The Band Gap Characteristics of Two-Dimensional Photonic Crystals
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 90
中文關鍵詞: 截面形狀光子晶體
外文關鍵詞: photonic crytsals, cross section shapes
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光子晶體藉由適當的設計,將具光子能隙的特性。二維光子晶體由於製造上較三維光子晶體容易,所以目前應用範圍較廣。本文研究三角形晶格空氣柱的二維光子晶體,基材為矽(介電常數為12.096),利用時域有限差分法配合週期性邊界條件,找出其光子能帶結構與能隙。藉由改變空氣柱的截面形狀,討論截面形狀與能隙形成的關係,柱體形狀包括圓柱、方柱、第一型六角柱、第二型六角柱、第一型八角柱及第二型八角柱。

      分析結果發現三角形晶格的空氣柱是良好的TE能隙光子晶體,各個結構的TE能隙至少都在40%以上,而在第二能帶與第三能帶之間的TM能隙將會決定完全能隙的大小。在六種結構中,以第二型六角柱的完全能隙寬度最大,較圓柱的完全能隙寬度更佳,能隙大小可達17.7%。

      Photonic crystals could have photonic band gap properties by appropriate design. The fabrication of two-dimensional (2D) photonic crystals is easier than that of three- dimensional ones, so applications of 2D photonic cryastals at present are wider. 2D photonic crystals with triangular lattices of air cylinders are investigated in this thesis, and the substrate adopted is silicon (dielectric constant 12.096). With the periodic boundary condition, the finite difference time domain method is used to find photonic band structures and photonic band gaps. By changing the cross section shapes of air cylinders, the relation between the cross section shapes and band gaps is discussed. The shapes of cylinders are circle, square, the hexagon of the first type, the hexagon of the second type, the octagon of the first type, and the octagon of the second type.

      The results show that triangular lattices of various air cylinders are good for the formation of TE band gap, and TE band gap of every structure is more than 40% at least. The complete band gaps would be decided by the TM band gaps between the second band gaps and the third band gaps. In the six structures, the complete band gap of the hexagon of the second type is the largest, up to 17.7% can be obtained.

    目錄 I 表目錄 IV 圖目錄 V 符號表 VIII 第一章、導論 1 1-1 前言 1 1-2 光子晶體簡介 2 1-2-1 光子晶體的應用 4 1-3 文獻回顧 6 1-4 研究動機與目標 15 第二章、時域有限差分法 17 2-1前言 17 2-2 Maxwell’s equations 17 2-2-1 三維純量Maxwell’s equations的表示式 19 2-2-2 二維純量Maxwell’s equations的表示式 20 2-2-3 橫磁模(TM mode) 21 2-2-4 橫電模(TE mode) 21 2-3時域有限差分法:Yee Algorithm【35】 22 2-3-1 基本概念 22 2-3-2 有限差分及符號 23 2-3-3 Maxwell’s equations在三維的有限差分表示式 23 2-3-4 Maxwell’s equations在二維橫電模與橫磁模的有限差分表示式 24 2-4 時間與空間網格的選擇 25 2-4-1 穩定度 25 2-4-2 數值色散問題 26 第三章、以時域有限差分法計算能帶結構 27 3-1 前言 27 3-2模型與晶格 27 3-3問題描述 29 3-4邊界條件與初始條件 31 3-4-1 Bloch theory 31 3-4-2 邊界條件 33 3-4-3 初始條件 33 3-5 程式流程 34 第四章、結果與討論 36 4-1前言 36 4-2參數分析 36 4-3能帶結構的基本特性 38 4-4 能隙圖的比較 39 第五章、結論 42 參考文獻 43

    【1】 http://home.earthlink.net/~jpdowling/pbgbib.html
    【2】 G. Vogel, “Breakthrough of the Year”, Science 286, pp.2238-2239 (1999).
    【3】 http://ab-initio.mit.edu/photons/tutorial/
    【4】 T. Baba, “Photonic Crystals and Microdisk Cavities Based on GaInAsP–InP System”, IEEE Journal of Selected Topics in Quantum Electronics 3, pp. 808-830(1997).
    【5】 http://www.blazephotonics.com/
    【6】 M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light Extraction from Optically Pumped Light-Emitting Diode by Thin-Slab Photonic Crystals”, Appl. Phys. Lett. 75, pp. 1036-1038 (1999).
    【7】 M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides”, J. Lightwave Tech. 18, pp. 1402-1411 (2000).
    【8】 E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett. 58, pp. 2059-2602 (1987).
    【9】S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattice”, Phys. Rev. Lett. 58, pp. 2486-2489 (1987).
    【10】 E. Yablonovitch and T. J. Gmitter, “Photonic Band Structure: The Face-Centered-Cubic Case”, Phys. Rev. Lett. 63, pp. 1950-1953 (1989).
    【11】 K. M. Ho, C. T. Chart, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures”, Phys. Rev. Lett. 65, pp. 3152-3155 (1990).
    【12】 E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms”, Phys. Rev. Lett. 67, pp. 2295-2298 (1991).
    【13】 Z. Zhang and S. Satpathy, “Electromagnetic Wave Propagation in Periodic Structure: Bloch Wave Solution of Maxwell’s Equations”, Phys. Rev. Lett. 65, pp. 2650-2653 (1990).
    【14】 K. M. Leung and Y. F. Liu, “Full Vector Wave Calculation of Photonic Band Structure in Face-Centered-Cubic Dielectric Media”, Phys. Rev. Lett. 65, pp. 2646-2649 (1990).
    【15】 H. S. Sozuer, J. W. Haus, and R. Inguva, “Photonic Bands: Convergence Problem with the Plane-Wave Method”, Phys. Rev. B 45, pp. 13962-13972 (1992).
    【16】 C. T. Chan, Q. L. Yu, and K. M. Ho, “Oder-N Spectral Method for Electromagnetic Wave”, Phys. Rev. B 51, pp. 16635-16642 (1995).
    【17】 J. B. Pendry and A. MacKinnon, “Calculation of Photon Dispersion Relation”, Phys. Rev. Lett. 69, pp 2772-2775 (1992).
    【18】C. M. Soukoulis, “The History and a Review of the Modelling and Fabrication of Photonic Crystals”, Nanotechnology 13, pp. 420-423(2002).
    【19】H. Benisty, M. Rattier and S. Olivier, “Two-Dimensional Photonic Crystals: New Feasible Confined Optical Systems”, C. R. Physique 3, pp. 89-102 (2002).
    【20】M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-Dimensional Photonic Band Structures”, Optics Communications 80, pp. 199-204(1991).
    【21】M. Plihal and A. A. Maradudin, “Photonic Band Structures of Two-Dimensional Systems: The Triangular Lattice”, Phys. Rev. B 44, pp. 8565-8571(1991).
    【22】P. R. Villeneuve and M. Piché, “Photonic Band Gaps in Two-Dimensional Square and Hexagonal Lattices”, Phys. Rev. B 46, pp. 4969-4972(1992).
    【23】P. R. Villeneuve and M. Piché, “Photonic Band Gaps in Two-Dimensional Square Lattices: Square and Circular Rods”, Phys. Rev. B 46, pp. 4973-4975(1992).
    【24】R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a Photonic Band Gap in Two Dimensions”, Appl. Phys. Lett. 61, pp. 495-497 (1992).
    【25】D. Cassagne, C. Jouanin, and D. Bertho, “Photonic Band Gaps in Two-Dimensional Graphite Structure”, Phys. Rev. B 52, pp. R2217-R2220(1995).
    【26】T. Baba and T. Matsuzaki, “Theoretical Calculation of Photonic Gap in Semiconductor 2-Dimensional Photonic Crystals with Various Shapes of Optical Atoms”, Jpn. J. Appl. Phys. 34, pp. 4496-4498 (1995).
    【27】D. Cassagne, C. Jouanin, and D. Bertho, “ Hexagonal Photonic- Band-Gap Structures”, Phys. Rev. B 53, pp. 7134-7142(1996).
    【28】C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps”, Phys. Rev. Lett. 77, pp. 2949-2952(1996).
    【29】C. S. Kee, J. E. Kim, and H. Y. Park, “Absolute Photonic Band Gap in a Two-Dimensional Square Lattice of Square Dielectric Rods in Air”, Phys. Rev. E 56, pp. R6291-R6293(1997).
    【30】S. Y. Li , B. Y. Gu, and G. Z. Yang, “Large Absolute Band Gap in 2D Anisotropic Photonic Crystals”, Phys. Rev. Lett. 81, pp. 2574-2577(1998).
    【31】X. H. Wang, B. Y. Gu, Z. Y. Li, and G. Z. Yang, “Large Absolute Band Gaps Created by Rotating Noncircular Rods in Two-Dimensional Lattice”, Phys. Rev. B 60, pp. 11417-11421(1999).
    【32】M. Qiu and S. He, “Optimal Design of a Two-Dimensional Photonic Crystal of Square Lattice with a Large Complete Two-Dimensional Bandgap”, J. Opt. Soc. Am. B 17, pp. 1027-1030(2000).
    【33】L. Shen, Z. Ye, and S. He, “Design of a Two-Dimensional Photonic Crystals with Large Absolute Band Gaps Using a Genetic Algorithm”, Phy. Rev. B 68, pp. 035109-1~035109-5(2003).
    【34】L. F. Marsal, T. Trifonov, A. Rodriguez, J. Pallares, and R. Alcubilla, “Large Absolute Photonic Band Gap in Two-Dimensional Air-Silicon Structures”, Physica E 19, pp. 580-585(2003).
    【35】A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston (1995).
    【36】 J. D. Jaonnopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton Unversity Press, Princeton, New Jersey (1995).

    下載圖示 校內:立即公開
    校外:2004-08-25公開
    QR CODE