研究生: |
阮有義 Nguyen-Huu, Nghia |
---|---|
論文名稱: |
數值模型建立與物理機制探究一維奈米光柵之光學反應以開發前瞻性光電元件 Numerical Modeling and Physical Investigation on Optical Responses from Developed Omni Dimensional Nanogratings for Optoelectronic Devices |
指導教授: |
羅裕龍
Lo, Yu-Lung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 電磁波 、放射器和濾波器 、有限差分時間域方法 、基因演算法 、光柵 、極光器 、嚴格耦合波理論 、次波長結構 |
外文關鍵詞: | Electromagnetic waves, Emitters and filters, FDTD, GA, Gratings, Polarizer, RCWA, Subwavelength structures |
相關次數: | 點閱:94 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般光的反應控制包含穿透、反射和吸收,在光電系統、微電子系統以及節能系統等微奈米結構中扮演著關鍵的角色。隨著奈米製程技術以及一維、二維、三維等週期性奈米結構的發展,在特定領域需要強化或調整光反應狀態時經常性會使用像彩色濾光片、偏振片、光激發器或光吸收器、偵測器以及感測器等光學元件與儀器。隨著目前的學術研究致力於一維週期性奈米結構的應用於光電機構的數值研究發展,一維結構在理論分析和實驗論證據深具研究潛力的優勢。包括整合性偏振片以及彩色濾光片(紅、綠、藍)的設計;彩色濾光片的設計具備高性能、設計偏振鈍化thermophotovoltaic發射器研究以及紅外光(IR)吸收比光譜或在近紅外光與可見光區域光穿透的控制。
本論文的數值模擬方法建構於嚴格耦合波理論(RCWA)、有限差分時間域法(FDTD)以及基因演算法(GA)等基礎理論與方法。其中RCWA與GA是使用MATLAB程式語言完成撰寫,而FDTD則是使用商用軟體(OptiFDTD)。RCWA是計算結構的光反應變化,而GA則是在特定波長光反應變化的幾何參數求取最佳化的方法。然而,耦合波理論原是使用於連續以計算電磁場、波印庭向量(Poynting vector)的分佈及繞射效率的有效計算方法。
針對整合性偏振片與RGB彩色濾光片,本研究提供了一個方便且有效率的方法在使用單一機構建立於次波長金屬光柵(SWMGs)液晶顯示面板時,能同時達到偏振與濾波的機制。依照次波長金屬光柵(SWMGs)的應用,建議RGB 彩色濾光片使用高穿透率、寬波段以及無額外穿透峰值的回音金屬波導器(SWGs)。再者,一綜合研究探討關於如何引發進而增強奈米結構輻射的物理機制,希望能設計出簡單的光柵如同thermophotovoltaic發射器同時包含橫向電波與磁波效應。同樣地,一包含入射光入射角鈍化之紅外光(IR)吸收比光譜的單層波長金屬光柵(SWMGs)結構也會在此論文提及並以可調式吸收比光譜伴隨幾何參數與光柵層的改變為例子介紹。此外,一新式雙層混和光柵結構(DCG)的概念也會介紹如何控制光穿透,例如:移動、開放或遮蔽任何在可見光和近紅外光區域的電磁波視窗,可應用在位置感測或其它應用。本論文所得到的結果與物理現象探究期將提供如何設計一維奈米光柵光電機構的潛力方法並能輕易的使用目前一維微奈米製造技術。
Control of optical responses including transmittance, reflectance, or absorptance spectra using micro/nanostructures plays a key role in such tremendous applications as photonics, microelectronics, and energy conversion systems. With developments of nanofabrication technology, periodic nanostructures based on one, two, and three dimensions (1, 2, and 3D) have been considerable as promising candidates in enhancing or modifying optical responses. Accordingly, this dissertation aims to numerically investigate 1D periodic nanograting structures used for color filters, polarizers, emitters or absorbers, and sensors since the 1D structures possess potential benefits of theoretical analyses and experimental demonstrations. These applications include the design of integrated polarizer and RGB (red, green, and blue) color filters, the design of RGB color filters featuring high performance, investigation on physical mechanisms to design a polarization-insensitive thermophotovoltaic emitter, and controlling infrared (IR) absorptance spectra or optical transmission spectra in near IR and visible regions.
The numerical methods used in this dissertation are based on the rigorous coupled-wave analysis (RCWA), the finite-difference time-domain method (FDTD), and a genetic algorithm (GA). The RCWA and GA are the developments of the working codes based on the MATLAB programming language while the FDTD is a commercial software, namely OptiFDTD. The RCWA method is utilized to calculate optical responses of nanostructures, while the GA is used to optimize geometrical parameters of the nanostructures in such a way as to maximize or minimize the optical responses at the wavelengths of interest. Physical origins are, however, demonstrated by plotting electromagnetic field patterns and Poynting vector distributions within the structures using the FDTD method.
For the integrated polarizer and RGB color filters, the study provides a convenient and effective means of achieving the polarizing and filtering functions in liquid crystal display panels using a single device constructed on different subwavelength metallic gratings (SWMGs). In accordance with applications of SWMGs, RGB color filters-based resonant waveguide-metallic SWGs are proposed with high transmission efficiencies, broad bandwidths, and no redundant transmission peaks. Next, a comprehensive study is performed to investigate physical mechanisms, which cause the emittance enhancement of nanostructures, in order to design a very simple grating as a thermophotovoltaic emitter working under both transverse magnetic and transverse electric waves. Similarly, a single-layered SWMG owning an IR absorptance spectrum insensitive to the angle of incidence is recommended and features a tunable absorptance spectrum with a change in geometrical parameters and grating layers. Furthermore, a new concept of double-layered compound grating structure (DCG) is represented for actively controlling optical transmission spectra, e.g., shifting, opening, or blocking any special electromagnetic window in the visible and near IR regimes, which can be applied for displacement sensors or other applications. Overall, the numerical results and physical investigation obtained from the dissertation will provide a potential means of designing optoelectronic devices based on the 1D nanograting structures which is easily manufactured using current micro/nanofabrication technology.
[1] Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
[2] J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[3] D. Xiang, L.-L. Wang, X. Zhai, L. Wang, and A.-L. Pan, "Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits," Opt. Commun. 284, 471-475 (2011).
[4] D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, and W.-W. Zhao, "Transmission resonances of compound metallic gratings with two subwavelength slits in each period," Opt. Express 19, 2187-2192 (2011).
[5] L. Moreno and F. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004).
[6] L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[7] Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006).
[8] E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000).
[9] Y. Wang, Y. Wang, Y. Zhang, and S. Liu, "Transmission through metallic array slits with perpendicular cuts," Opt. Express 17, 5014-5022 (2009).
[10] Z. Liu, H. Li, S. Xie, H. Xu, S. Fu, X. Zhou, and C. Wu, "Tunable phase resonances in a compound metallic grating with perpendicular bumps and cuts," Opt. Express 19, 4217-4222 (2011).
[11] Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485-4491 (2005).
[12] X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B 80, 301-305 (2005).
[13] R. L. Chern and W. T. Hong, "Nearly perfect absorption in intrinsically low-loss grating structures," Opt. Express 19, 8962-8972 (2011).
[14] R. L. Chern and W. T. Hong, "Transmission resonances and antiresonances in metallic arrays of compound subwavelength holes," J. Opt. 12, 065101 (2010).
[15] C. H. Lin, R. L. Chern, and H. Y. Lin, "Polarization-independent broad-band nearly perfect absorbers in the visible regime," Opt. Express 19, 415-424 (2011).
[16] S. E. Han and G. Chen, "Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics," Nano Lett. 10, 1012-1015 (2010).
[17] P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, "Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals," Nano Lett. 8, 3238-3243 (2008).
[18] S. Y. Lin, J. Moreno, and J. G. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003).
[19] T. Asano, K. Mochizuki, M. Yamaguchi, M. Chaminda, and S. Noda, "Spectrally selective thermal radiation based on intersubband transitions and photonic crystals," Opt. Express 17, 19190-19203 (2009).
[20] N. P. Sergeant, M. Agrawal, and P. Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Opt. Express 18, 5525-5540 (2010).
[21] S. E. Han, A. Stein, and D. J. Norris, "Tailoring self-assembled metallic photonic crystals for modified thermal emission," Phys. Rev. Lett. 99, 053906 (2007).
[22] M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117-122 (1999).
[23] F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express 13, 70-76 (2005).
[24] Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D: Appl. Phys. 41, 095406 (2008).
[25] Z.-F. Huang, P.-f. Hsu, A.-H. Wang, Y.-B. Chen, L.-H. Liu, and H.-C. Zhou, "Wavelength-selective infrared absorptance of heavily doped silicon complex gratings with geometric modifications," J. Opt. Soc. Am. B 28, 929-936 (2011).
[26] P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Organ pipe radiant modes of periodic micromachined silicon surfaces," Nature 324, 549-551 (1986).
[27] P. J. Hesketh, J. N. Zemel, and B. Gebhart, "Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction," Phys. Rev. B 37, 10795-10802 (1988).
[28] J. Le Gall, M. Olivier, and J. J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton," Phys. Rev. B 55, 10105-10114 (1997).
[29] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002).
[30] F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[31] N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009).
[32] A. Taflove and S. C. Hagness, Computional Electrodynamics-the Finite-Difference Time-Domain Method (Artech House, 2000).
[33] L. C. Botten, M. S. Craig, and R. C. McPhedran, "Highly conducting lamellar diffraction gratings," Optica Acta 28, 1103-1106 (1981).
[34] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
[35] L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996).
[36] P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996).
[37] G. Granet and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996).
[38] Y.-B. Chen, Z. Zhang, and P. Timans, "Radiative properties of patterned wafers with nanoscale linewidth," J. Heat Transfer 129, 79-90 (2007).
[39] J. H. Holland, "Adaption in nature and artificial system," Ann Arbor, MI: Univ. of Michigan Press (1975).
[40] Z. Michalewicz, Genetic Algorithms + Data Strucutres = Evolution Programs (Spring-Verlag, New York, 1992).
[41] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[42] "Technical Background and Tutorials, ver. 4.0," OptiFDTD by Optiwave Corp., www.optiwave.com.
[43] P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley-Interscience, 1999).
[44] M. Xu, H. Urbach, D. De Boer, and H. Cornelissen, "Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express 13, 2303-2320 (2005).
[45] Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323-2334 (2006).
[46] D. R. Chiou, K. Y. Yeh, and L. J. Chen, "Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces," Appl. Phys. Lett. 88, 133123 (2006).
[47] H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express 15, 15457-15463 (2007).
[48] Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photonics Technol. Lett. 18, 2126-2128 (2006).
[49] D. Kim and K. Burke, "Design of a grating-based thin-film filter for broadband spectropolarimetry," Appl. Opt. 42, 6321-6326 (2003).
[50] P. C. Chen, H. L. Kuo, C. H. Chiu, and L. B. Yu, "Color filter and method of fabricating the same," (Google Patents, 2005).
[51] Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, "Color filter incorporating a subwavelength patterned grating in poly silicon," Opt. Express 16, 2374-2380 (2008).
[52] Y. T. Yoon and S. S. Lee, "Transmission type color filter incorporating a silver film based etalon," Opt. Express 18, 5344-5349 (2010).
[53] H. Ghaemi, T. Thio, D. Grupp, T. W. Ebbesen, and H. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[54] Y. Ye, H. Zhang, Y. Zhou, and L. Chen, "Color filter based on a submicrometer cascaded grating," Opt. Commun. 283, 613-616 (2010).
[55] Q. Chen and D. R. S. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express 18, 14056-14062 (2010).
[56] S. Tibuleac and R. Magnusson, "Reflection and transmission guided-mode resonance filters," J. Opt. Soc. Am. A 14, 1617-1626 (1997).
[57] N. Nguyen-Huu, Y.-L. Lo, Y.-B. Chen, and T.-Y. Yang, "Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme," Appl. Opt. 50, 415-426 (2011).
[58] T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nat. Commun. 1, 59 (2010).
[59] S. Basu, Y.-B. Chen, and Z. M. Zhang, "Microscale radiation in thermophotovoltaic devices--A review," Int. J. Energy Res. 31, 689-716 (2007).
[60] A. Narayanaswamy and G. Chen, "Thermal emission control with one-dimensional metallodielectric photonic crystals," Phys. Rev. B 70, 125101 (2004).
[61] H. Sai, Y. Kanamori, K. Hane, and H. Yugami, "Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices," J. Opt. Soc. Am. A 22, 1805-1813 (2005).
[62] M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009).
[63] H. Sai, Y. Kanamori, and H. Yugami, "High-temperature resistive surface grating for spectral control of thermal radiation," Appl. Phys. Lett. 82, 1685-1687 (2003).
[64] Y.-B. Chen and K.-H. Tan, "The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters," Int. J. Heat and Mass Transf. 53, 5542-5551 (2010).
[65] Q.-C. Zhang and D. R. Mills, "Very low-emittance solar selective surfaces using new film structures," J. Appl. Phys. 72, 3013-3021 (1992).
[66] I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127 (2005).
[67] T. J. Coutts, "A review of progress in thermophotovoltaic generation of electricity," Renewable & Sustainable Energy Rev. 3, 77-184 (1999).
[68] S. Basu, Y. B. Chen, and Z. Zhang, "Microscale radiation in thermophotovoltaic devices—A review," Int. J. Energy Res. 31, 689-716 (2007).
[69] Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
[70] J. S. Chen, P. D. Lin, F. C. Chiu, and Y. B. Chen, "Grating profile optimization for narrow-band or broad-band infrared emitters with differential evolution algorithms," Optics Letters 37, 3399-3401 (2012).
[71] N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, "Development of a polarization-Insensitive thermophotovoltaic emitter with a binary grating," Opt. Express 20, 5882-5890 (2012).
[72] J. Qiu, L. H. Liu, and P. f. Hsu, "FDTD analysis of infrared radiative properties of microscale structure aluminum surfaces," J. Quant. Spectrosc. Radiat. Transf. 111, 1912-1920 (2010).
[73] Y. Jiao, L. H. Liu, and P.-f. Hsu, "Widening absorption band of grating structure with complex dual-groove grating," in Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition(ASME, Colorado, USA, 2011).
[74] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[75] Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[76] H. H. Hsiao, H. F. Huang, S. C. Lee, and H. C. Chang, "Investigating far-field spectra and near-field features of extraordinary optical transmission through periodic U-to H-shaped apertures," IEEE Photon. J. 4, 387-398 (2012).
[77] D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005).
[78] D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[79] A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[80] Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007).
[81] M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107-091103 (2009).
[82] W. L. Barnes, A. Dereux, and T. W. Ebbsen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[83] H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays," Opt. Lett. 31, 516-518 (2006).
[84] C. Cheng, J. Chen, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, and H.-T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[85] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[86] J.-S. Chen, Y.-B. Chen, P.-f. Hsu, N. Nguyen-Huu, and Y.-L. Lo, "Cryptographic scheme using genetic algorithm and optical responses of periodic structures," Opt. Express 19, 8187-8199 (2011).
[87] N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, "Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating," Opt. Commun. 284, 2473-2479 (2011).
[88] C. Cheng, J. Chen, D.-J. Shi, Q.-Y. Wu, F.-F. Ren, J. Xu, Y.-X. Fan, J. Ding, and H.-T. Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures," Phys. Rev. B 78, 075406 (2008).
[89] T. C. Yu and Y. L. Lo, "A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach," J. Lightwave Technol. 25, 946-951 (2007).
[90] R. C. McPhedran and D. Maystre, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Optica Acta 21, 413-421 (1974).
[91] M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976).
[92] E. Popov, D. Maystre, R. C. McPhedran, M. Nevière, M. C. Hutley, and G. H. Derrick, "Total absorption of unpolarized light by crossed gratings," Opt. Express 16, 6146-6155 (2008).
[93] E. Popov and L. Tsonev, "Comment on ‘Resonant electric field enhancement in the vicinity of a bare metallic grating exposed to s-polarized light by A.A. Maradudin and A. Wirgin’: Anomalous light absorption by lamellar metallic gratings," Surf. Sci. Lett. 271, L378-L382 (1992).
[94] E. Popov, L. Tsonev, and D. Maystre, "Lamellar metallic grating anomalies," Appl. Opt. 33, 5214-5219 (1994).
[95] A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
[96] J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sensors and Actuators B 54, 16-24 (1999).
[97] K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, "Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity," Opt. Express 16, 18599-18604 (2008).
[98] Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102-061103 (2008).
[99] B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-Infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).
[100] T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett. 90, 251112-251112-251113 (2007).
[101] L. Wang and Z. Zhang, "Phonon-mediated magnetic polaritons in the infrared region," Opt. Express 19, A126-A135 (2011).
[102] N. Engheta, "Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007).
[103] C. Y. Chen and Y. L. Lo, "Feasibility study on twisted nematic liquid-crystal cell with two cross-embedded wire-grid polarizers as alignment and electrode for projection displays," Appl. Opt. 48, 6558-6566 (2009).
[104] K. W. Chien and H. P. D. Shieh, "Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination," Appl. Opt. 43, 1830-1834 (2004).
[105] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
[106] D. F. Edwards, "Silicon (Si)," in Handbook of optical constants of solids, E. D. Palik, ed. (Academic press, San Diego, CA, 1998).
[107] J. Guild, "The colorimetric properties of the spectrum," Philosophical Transactions of the Royal Society of London. A 230, 149-187 (1932).
[108] A. K. Azad, Y. Zhao, W. Zhang, and M. He, "Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays," Opt. Lett. 31, 2637-2639 (2006).
[109] G. Schider, J. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001).
[110] J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006).
[111] M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. Lyon, and S. Y. Chou, "Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography," Appl. Phys. Lett. 84, 5299 (2004).
[112] M. D. Austin, W. Zhang, H. Ge, D. Wasserman, S. Lyon, and S. Y. Chou, "6 nm half-pitch lines and 0.04 µm2 static random access memory patterns by nanoimprint lithography," Nanotechnology 16, 1058 (2005).
[113] Z. Yu, L. Chen, W. Wu, H. Ge, and S. Y. Chou, "Fabrication of nanoscale gratings with reduced line edge roughness using nanoimprint lithography," J. Vac. Sci. Technol. B 21, 2089-2092 (2003).
[114] Z. Wang, J. Chu, and F. Meng, "Design of an integrated wide-angle, broad polarization band pass filter," in SPIE(International Society for Optics and Photonics, 2012), pp. 833513-833513-833517.
[115] J. Ma, S. Liu, Y. Jin, C. Xu, J. Shao, and Z. Fan, "Novel method for design of surface relief guided-mode resonant gratings at normal incidence," Opt. Commun. 281, 3295-3300 (2008).
[116] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897-2904 (1997).
[117] T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, "Structural colors: from plasmonic to carbon nanostructures," Small (2011).
[118] M. J. Uddin and R. Magnusson, "Efficient guided-mode-resonant tunable color filters," IEEE Photonics Technol. Lett. 24, 1552-1554 (2012).
[119] N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, "Transmission RGB filters-based plasmonic subwavelength structures enhanced by surface plasmon polaritons," in International Symposium on Nano Science and Technology (The 1st place Best Poster Award Paper)( Taiwan, 2011).
[120] A. F. Kaplan, T. Xu, and L. Jay Guo, "High
efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography," Appl. Phys. Lett. 99, 143111-143111-143113 (2011).
[121] N. Nguyen-Huu, Y. L. Lo, Y. B. Chen, and T. Y. Yang, "Subwavelength metallic gratings as an integrated device: polarized color filter," in SPIE(2011), p. 79340U.
[122] N. Nguyen-Huu and Y.-L. Lo, "Control of infrared spectral absorptance with omni dimensional subwavelength grtaings," Submitted (2012).
[123] B. Ung and Y. Sheng, "Interference of surface waves in a metallic nanoslit," Opt. Express 15, 1182-1190 (2007).
[124] T. M. Cotter, M. E. Thomas, and W. J. Troff, "Magnesium Fluoride (MgF2)," in Hand Book of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, San Diego, CA, 1985).
[125] N. Nguyen-Huu and Y.-L. Lo, "Tailoring the optical transmission spectra of double-layered compound metallic gratings," Submitted (2012).