簡易檢索 / 詳目顯示

研究生: 蔡佳宏
Tsai, Chia-Hung
論文名稱: 以雙氧水處理法改善氧化鋅蕭基二極體電特性
Improvement of Electrical Properties of ZnO Schottky Diode Using Hydrogen Peroxide Treatment
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 114
中文關鍵詞: 氧化鋅雙氧水(氧化)鉑蕭基二極體能障高度
外文關鍵詞: ZnO, hydrogen peroxide, Pt (oxide), Schottky diode, barrier height
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,吾人藉由雙氧水處理法成功地提升氧化鋅蕭基二極體的電特性。首先,於室溫下利用雙氧水溶液對氧化鋅薄膜做表面處理可成功地使多晶性氧化鋅轉變為絕緣性。此外,根據光激發光譜分析,在雙氧水處理之後,深層能階的放射強度顯著地被加強,而紫外光放射強度並未被影響;這強烈地透露出穿入氧化鋅中的氧基佔據了間隙位置而造成如受體的氧間隙缺陷,或者填充鋅空缺形成氧錯位缺陷。利用不同時間的雙氧水處理後,吾人於氧化鋅薄膜與水熱成長法之(0001)結晶相(鋅極化)的氧化鋅基板上製作鉑蕭基二極體,成功地達成有效的蕭基整流特性。從電流密度-電壓量測中,計算出來的能障高度介於0.89電子伏特與0.96電子伏特之間,飽和電流密度介於2.21×10^-10 安培/平方公分和3.31×10^-9 安培/平方公分之間。從電容-電壓量測中所計算出的有效施體濃度隨著處理時間增加而減少,意謂雙氧水處理後造成空間電荷區變寬的效果。整流特性與處理時間有相關性並有起始整流特性的處理時間,整流特性與表面粗糙度呈現相反的趨勢。蕭基特性於45分鐘或超過45分鐘的雙氧水處理時間下實現,而最佳的蕭基電特性於60分鐘的雙氧水處理條件下達成。
    再者吾人在(0001)結晶面的氧化鋅基板上,利用氧化鉑的沉積製程配合雙氧水處理之技術提升氧化鋅蕭基二極體的電特性。跟鉑蕭基二極體比較,同樣60分鐘的雙氧水處理條件下,氧化鉑蕭基二極體具有較佳的電特性。氧化鉑蕭基二極體具有較高的能障高度(1.09電子伏特),較低的漏電流(-2伏特下為9.52×10^-11 安培/平方公分)與較高的整流比(-2與2伏特之間約為10^9)。根據電流-電壓量測、電容-電壓量測、x光繞射、光激發光譜、x射線光電子能譜、二次離子質譜分析,吾人在論文中提出可能的機制來解釋有效的整流特性與蕭基行為的提升。

    In this thesis, the improvement of electrical properties of ZnO Schottky diode (SD) is successfully fulfilled by hydrogen peroxide (H2O2) treatment. First, it is shown ZnO thin films with hydrogen peroxide solution treatment at room temperature substantially change the poly-crystalline ZnO film into an insulator. In addition, according to the significant enhancement on the intensity of deep-level emission without affecting the intensity of ultraviolet (UV) emission in photoluminescence (PL) spectra for H2O2 treatment; it strongly reveals the fact that the oxygen radicals penetrating into a ZnO are reasonably speculated to form acceptor-like oxygen interstitials Oi or fill the Zn vacancies to form antisite oxygen OZn defects. Platinum (Pt) SD on ZnO thin films and hydrothermally grown, Zn-terminated (0001) ZnO substrates with the different hydrogen peroxide treatment time successfully exhibits the effective Schottky rectification performance. From current density-voltage (J-V) measurement, the evaluated barrier height has the value between 0.89 eV-0.96 eV with the saturation current density in the range of 2.21×10^-10 A/cm2-3.31×10^-9 A/cm2. The effective donor concentration calculated from capacitance-voltage (C-V) measurement decreases as treatment time, implying the widening of the space charge region after H2O2 treatment. The rectifying behavior has the threshold dependence on the treatment time and has the reverse trend toward the surface asperities. The Schottky performance is realized for H2O2 treatment time of or longer than 45 min, and the better Schottky electrical properties is achieved for 60 min H2O2 treatment time.
    Second, we utilize the technique of Pt oxide deposition process combining with H2O2 treatment on (0001) ZnO substrates to enhance ZnO SD electrical properties. The better electrical properties are performed by Pt oxide SD with the larger barrier height (1.09 eV), lower leakage current (9.52×10^-11 A/cm2 at -2 V) and the higher rectification ratio (about 9 orders of magnitude) between -2 and 2 V than Pt SD on the H2O2-treated ZnO for 60 min. Based on current-voltage, capacitance-voltage, X-ray diffraction, PL spectra, x-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometer (SIMS) results, the possible mechanisms for effective SD characteristic and enhanced Schottky behavior are given in this thesis.

    Abstract (in Chinese)……………………………………………………………………………………………………I Abstract (in English)………………………………………………………………………………………………III Contents……………………………………………………………………………………………………………………………………VI Table captions………………………………………………………………………………………………………………………X Figure captions…………………………………………………………………………………………………………………XI Chapter 1 Introduction…………………………………………………………………………………………………1 1.1 General background and motivation…………………………………………………………1 1.1.1 Properties of ZnO materials……………………………………………………………………1 1.1.2 Current progress of Schottky diodes and field-effect transistor on ZnO………………………………………………………………………………………………………………3 1.2 Thesis organization………………………………………………………………………………………………6 References…………………………………………………………………………………………………………………………………8 Chapter 2 Theory………………………………………………………………………………………………………………14 2.1 Electrical properties of metal-semiconductor contacts…………………………..14 2.1.1 Schottky model……………………………………………………………………………………………………14 2.1.2 Bardeen model………………………………………………………………………………………………………16 2.1.3. Generalized analysis…………………………………………………………………………………18 2.1.4 Current transport……………………………………………………………………………………………21 2.1.5 Thermionic emission: rectification………………………………………………22 2.1.6 Field emission and thermionic-field emission……………………23 2.1.7 Specific contact resistance…………………………………………………………………24 2.1.8 Contact resistance measurement: transmission line method…………………………………………………………………………………………………………………………………………25 References………………………………………………………………………………………………………………………………27 Chapter 3 Characteristics of hydrogen peroxide treatment on ZnO thin film……………………………………………………………………………………………………………………32 3.1 Introduction………………………………………………………………………………………………………………32 3.2 Experimental………………………………………………………………………………………………………………33 3.2.1 Substrate cleaning…………………………………………………………………………………………34 3.2.2 Sputtering condition of ZnO thin film………………………………………34 3.2.3 Etching process…………………………………………………………………………………………………34 3.2.4 Ohmic contact deposition…………………………………………………………………………35 3.2.5 H2O2 treatment for formation of insulating layer…………35 3.2.6 Schottky contact deposition…………………………………………………………………35 3.2.7 Measurement……………………………………………………………………………………………………………35 3.3 Results and discussion……………………………………………………………………………………36 3.3.1 The effects of deposition parameters on ZnO thin film………………………………………………………………………………………………………………………………………………36 3.3.2 XRD analysis of ZnO thin film with/without H2O2 treatment…………………………………………………………………………………………………………………………………37 3.3.3 TEM images of ZnO thin film with/without H2O2 treatment…………………………………………………………………………………………………………………………………38 3.3.4 PL spectra of ZnO thin film with/without H2O2 treatment…………………………………………………………………………………………………………………………………39 3.3.5 Ti/Al Ohmic contacts on ZnO thin film………………………………………41 3.3.6 Pt Schottky diodes on ZnO thin film……………………………………………41 3.4 Summary……………………………………………………………………………………………………………………………43 References………………………………………………………………………………………………………………………………44 Chapter 4 Characteristics of hydrothermally grown ZnO treated with hydrogen peroxide and Pt and Pt oxide Schottky diodes………………....……………....….62 4.1 Introduction………………………………………….………………………..….62 4.2 Experimental……………………………………………………………………..64 4.2.1 Wafer cleaning…………………………………..……………………………..64 4.2.2 H2O2 surface treatment on ZnO…………………………….…………………..64 4.2.3 Ohmic contact deposition…………………………………..…………………..65 4.2.4 Schottky contact deposition………………………………………….…………65 4.2.5 Measurement……………………………………………………….…………..65 4.3 Results and discussion……………………………………………….….………..66 4.3.1 AFM measurement on ZnO with the different H2O2 treatment conditions….....66 4.3.2 XRD θ-rocking curves of single-crystal ZnO with the different H2O2 treatment conditions……………………………………….……………………….….………..67 4.3.3 PL spectra of single-crystal ZnO with the different H2O2 treatment condition..67 4.3.4 TEM images of single-crystal ZnO with H2O2 treatment………….….……….68 4.3.5 The GIXRD patterns of single-crystal ZnO with the different H2O2 treatment conditions………………………………………………………………...….……….70 4.3.6 The GIXRD patterns of Pt and Pt oxide films under the different O2 flow ratio in rf magnetron sputtering system………………………………………...….…………70 4.3.7 AFM measurement of Pt and Pt oxide films under the different O2 flow ratio in rf magnetron sputtering system………………………………………...….…………71 4.3.8 Resistivity of Pt and Pt oxide films under the different O2 flow ratio in rf magnetron sputtering system………………………………………...….……………71 4.3.9 Ti/Au Ohmic contact……………...…………………………...….……………72 4.3.10 The XPS spectra of ZnO with deposition of Pt and Pt oxide films………...…72 4.3.11 The SIMS depth profiles of ZnO with deposition of Pt and Pt oxide films…..74 4.3.12 Pt Schottky barrier diodes……...…………………………...….……………..75 4.3.13 Pt oxide Schottky barrier diodes…………………………...….……………...77 4.3.14 Mechanisms of effective Schottky diode characteristics………………...…...79 4.4 Summary……………...…………………………...….………………….....……80 References…………………………………………………………………….……82 Chapter 5 Conclusions and prospects.……………………………………………109 5.1 Conclusions……..………………………………………………………………109 5.2 Prospects…………………………………...……………………………………110 Publication List………………………………………………………………………………………………………112 Vita…………………………………………………………………………………………………………………………………………114

    Chapter 1
    [1] A. Shimizu, M. Kanbara, M. Hada, and M. Kasuga, Jpn. J. Appl. Phys. 17, 1435 (1978).
    [2] Ya. I. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, V. V. Mamedov, V. I. Zinenko, Yu. A. Agafonov, and A. N. Pustovit, Solid-State Electron. 48, 2343 (2004).
    [3] H. T. Wang, B. S. Kang, J. J. Chen, T. Anderson, S. Jang, F. Ren, H. S. Kim, Y. J. Li, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 88, 102107 (2006).
    [4] P. Chen, X. Ma, and D. Yang, Appl. Phys. Lett. 89, 111112 (2006).
    [5] D. K. Hwang, M. S. Oh, J. H. Lim, Y. S. Choi, and S. J. Park, Appl. Phys. Lett. 91, 121113 (2007).
    [6] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
    [7] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films. 445, 317 (2003).
    [8] B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 37, L206 (1998).
    [9] S. Hayamizu, H. Tabata, H. Tanaka, and T. Kawai, J. Appl. Phys. 80, 787 (1996).
    [10] Y. Ohya, T. Niwa, T. Ban and Y. Takahashi, Jpn. J. Appl. Phys., Part 1 40, 297 (2001).
    [11] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. 93, 1624 (2003).
    [12] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V.
    Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys., 98, 041301 (2005).
    [13] T. Yamamoto, T. Shiosaki, and A. Kawabata, J. Appl. Phys. 51, 3113 (1980).
    [14] T. Mitsuyu, S. Ono, and K. Wasa, J. Appl. Phys. 51, 2464 (1980).
    [15] A. Hachigo, H. Nakahata, K. Higaki, S. Fujii, and S. Shikata, Appl. Phys. Lett. 65, 2556 (1994).
    [16] K.-K. Kim, J.-H. Song, H.-J. Jung, W.-K. Choi, S.-J. Park, and J.-H. Song, J. Appl. Phys. 87, 3573 (2000).
    [17] K.-K. Kim, J.-H. Song, H.-J. Jung, W.-K. Choi, S.-J. Park, J.-H. Song, and J.-Y. Lee, J. Vac. Sci. Technol. A 18, 2864 (2000).
    [18] P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, J. Cryst. Growth 201–202, 627 (1999).
    [19] Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    [20] R. D. Vispute et al., Appl. Phys. Lett. 73, 348 (1998).
    [21] Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).
    [22] M. Kasuga and S. Ogawa, Jpn. J. Appl. Phys., Part 1 22, 794 (1983).
    [23] N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, and H. Yamamoto, Jpn. J. Appl. Phys., Part 2 38, L454 (1999).
    [24] T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, J. Cryst. Growth 214/215, 72 (2000).
    [25] T. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, and T. Shishido, J. Cryst. Growth 229, 98 (2001).
    [26] W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, J. Cryst. Growth 203, 186 (1999).
    [27] M. Shiloh and J. Gutman, J. Cryst. Growth 11, 105 (1971).
    [28] J.-M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Cryst. Growth 207, 30 (1999).
    [29] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, J. Appl. Phys. 86, 6864 (1991).
    [30] K. Matsumoto and K. Noda, J. Cryst. Growth 102, 137 (1990).
    [31] J. Nause, III-Vs Review 12, 28 (1999).
    [32] C. A. Mead, Phys. Lett. 18, 218 (1965).
    [33] C. Neville, and C. A. Mead, J. Appl. Phys. 41, 3795 (1970).
    [34] B. J. Coppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
    [35] A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova, V. I. Vdodin, K. Ip, Y. W. Heo, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).
    [36] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
    [37] N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, J. Mater. Res. 17, 1529 (2002).
    [38] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 2835 (2004).
    [39] S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).
    [40] Q. L. Gu, C. C. Ling, X. D. Cheng, A. M. C. Ng, C. D. Beling, S. Fung, A. B. Djurišić, L. W. Lu, G. Brauer, and H. C. Ong, Appl. Phys. Lett. 90, 122101 (2007).
    [41] R. Schifano, E. V. Monakhov, U. Grossner, and B. G. Svensson, Appl. Phys. Lett. 91, 193507 (2007).
    [42] S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 022101 (2005).
    [43] K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 5133 (2004).
    [44] M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, and S.-J. Park, Appl. Phys. Lett. 91, 042109 (2007).
    [45] J. F. Wagner, Science 300, 1245 (2003).
    [46] J. Nishii, A. Ohtomo, K. Ohtani, H. Ohno, and M. Kawasaki, Jpn. J. Appl. Phys., Part 2 40, L1193 (2005).
    [47] K. Ueno, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, and H. Takagi, Appl. Phys. Lett. 83, 1755 (2003).
    [48] S. T. Karris, Electronic Devices and Amplifier Circuits with MATLAB Computing, 2nd Ed., Chap. 4 (Orchard Publications, USA, 2008).
    [49] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. J. Youn, Appl. Phys. Lett. 87, 153504 (2005).
    [50] S. Kandasamy, W. Wlodarski, A. Holland, S. Nakagomi, and Y. Kokubun, Appl. Phys. Lett. 90, 064103 (2007).
    [51] M. W. Allen, S. M. Durbin, and J. B. Metson, Appl. Phys. Lett. 91, 053512 (2007).
    [52] M. W. Allen, and S. M. Durbin, Appl. Phys. Lett. 92, 122110 (2008).
    [53] H. Frenzel, A. Lajn, M. Brandt, H. von Wenckstern, G. Biehne, H. Hochmuth, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 92, 192108 (2008).
    [54] H. Frenzel, M. Lorenz, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 95, 153503 (2009).
    [55] H. Frenzel, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth, and M. Grundmann, Thin Solid Films 518, 1119 (2009).
    [56] Hadis Morkoç, and Ümit Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Chap. 1 (Wiley-VCH, USA, 2009).
    Chapter 2
    [1] E. H. Rhoderick, and R. H. Williams, Metal-semiconductor contacts, 2nd Ed.,
    Chap. 1 (Clarendon Press, Oxford, England, 1988).
    [2] W. Schottky, Naturwissenschaften 26, 843 (1938).
    [3] J. Bardeen, Phys. Rev. 71, 717 (1947).
    [4] A.M. Cowley, and S.M. Sze, J. Appl. Phys. 36, 3212 (1965).
    [5] S.M. Sze, Physics of Semiconductor Devices, 3rd Ed., Chap. 3 (Wiley, New
    York, 1969).
    [6] A. Y. C. Yu, Solid-State Electron. 13, 239 (1970).
    [7] K. Varahramyan, and E. J. Verret, Solid-State Electron. 39, 1601 (1996).
    [8] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd Ed., Chap. 3 (Wiley-Interscience, USA, 2006).
    Chapter 3
    [1] A. Shimizu, M. Kanbara, M. Hada, and M. Kasuga, Jpn. J. Appl. Phys. 17, 1435
    (1978).
    [2] Ya. I. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, V. V. Mamedov, V. I.
    Zinenko, Yu. A. Agafonov, and A. N. Pustovit, Solid-State Electron. 48, 2343 (2004).
    [3] H. T. Wang, B. S. Kang, J. J. Chen, T. Anderson, S. Jang, F. Ren, H. S. Kim, Y.
    J. Li, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 88, 102107 (2006).
    [4] P. Chen, X. Ma, and D. Yang, Appl. Phys. Lett. 89, 111112 (2006).
    [5] D. K. Hwang, M. S. Oh, J. H. Lim, Y. S. Choi, and S. J. Park, Appl. Phys. Lett.
    91, 121113 (2007).
    [6] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and
    Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).
    [7] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films
    445, 317 (2003).
    [8] B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys. 37, L206 (1998).
    [9] D. C. Look, Semicond. Sci. Technol. 20, S55 (2005).
    [10] T. Aoki and Y. Hatanaka, and D. C. Look, Appl. Phys. Lett. 76, 3257 (2000).
    [11] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White, Appl. Phys. Lett. 83, 4032
    (2003).
    [12] S. Mridha, and D. Basak, J. Appl. Phys. 101, 083102 (2007).
    [13] S. H. Kim, H. K. Kim, S. W. Jeong, and T. Y. Seong, Superlattices Microstruc.
    39, 211 (2006).
    [14] S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).
    [15] Q. L. Gu, C. C. Ling, X. D. Chen, C. K. Cheng, A. M. C. Ng, C. D. Beling, S.
    Fung, A. B. Djurišić, L. W. Lu, G. Brauer, and H. C. Ong, Appl. Phys. Lett. 90, 122101 (2007).
    [16] Y. Chen, F. Jiang, L. Wang, C. Mo, Y. Pu, and W. Fang, J. Cryst. Growth. 268,
    71 (2004).
    [17] Y. Chen, L. Wang, C. Mo, Y. Pu, W. Fang, and F. Jiang, Mater. Sci. Semicond.
    Process. 8, 569 (2005).
    [18] C. Kim, S. Kim, and C. Lee, Jpn. J. Appl. Phys. 44, 8501 (2005).
    [19] J. F. Chang, and M. H. Hon, Thin Solid Films 386, 79 (2001).
    [20] W. Y. Su, J. S. Huang, and C. F. Lin, J. Crystal Growth 310, 2806 (2008).
    [21] B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
    [22] S. M. Sze, Physics of Semiconductor Devices, 3rd Ed., Chap. 3 (Wiley, New York, 1969).
    Chapter 4
    [1] R. F. Service, Science 276, 895 (1997).
    [2] T. Aoki, Y. Hatanaka, and D. Look, Appl. Phys. Lett. 76, 3257 (2000).
    [3] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl. Phys. Lett. 77, 475 (2000).
    [4] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).
    [5] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 445, 317 (2003).
    [6] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, Thin Solid Films 431, 369 (2003).
    [7] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).
    [8] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
    [9] S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).
    [10] H. L. Mosbacker, Y. M. Strzhemechny, B. D. White, P. E. Smith, D. C. Look, D. C. Reynolds, C. W. Litton, and L. J. Brillson, Appl. Phys. Lett. 87, 012102 (2005).
    [11] M. W. Allen, S. M. Durbin, and J. B. Metson, Appl. Phys. Lett. 91, 053512 (2007).
    [12] H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, and Y. Kashiwaba, Appl. Phys. Lett. 90, 121906 (2007).
    [13] C. A. Mead, Phys. Lett. 18, 218 (1965).
    [14] C. Neville, and C. A. Mead, J. Appl. Phys. 41, 3795 (1970).
    [15] B. J. Coppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
    [16] K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 5133 (2004).
    [17] S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 022101 (2005).
    [18] Q. L. Gu, C. C. Ling, X. D. Cheng, A. M. C. Ng, C. D. Beling, S. Fung, A. B. Djurišić, L. W. Lu, G. Brauer, and H. C. Ong, Appl. Phys. Lett. 90, 122101 (2007).
    [19] K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, and J. H. Song, J. Appl. Phys. 87, 3573 (2000).
    [20] X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).
    [21] C. C. Lin, C. S. Hsiao, S. Y. Chen, and S. Y. Cheng, J. Electrochem. Soc. 151, G285 (2004).
    [22] A. Janotti, and C. G. Van de Walle, J. Cryst. Growth 287, 58 (2006).
    [23] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
    [24] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, USA, 1995).
    [25] J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319 (2000).
    [26] Q. L. Gu, C. K. Cheung, C. C. Ling, A. M. C. Ng, A. B. Djurišić, L. W. Lu, X. D. Chen, S. Fung, C. D. Beling, and H. C. Ong, J. Appl. Phys. 103, 093706 (2008).
    [27] K. M. Tracy, P. J. Hartlieb, S. Einfeldt, R. F. Davis, E. H. Hurt, and R. J. Nemanich, J. Appl. Phys. 94, 3939 (2003).
    [28] K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Surf. Sci. 236, 387 (2004).
    [29] T. Nagata, J. Volk, Y. Yamashita, H. Yoshikawa, M. Haemori, R. Hayakawa, M. Yoshitake, S. Ueda, K. Kobayashi, and T. Chikyow, Appl. Phys. Lett. 94, 221904 (2009).
    [30] S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, Chap. 3 (Wiley, New
    York, 1969).
    [31] K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).
    [32] C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I Hung, and M. P. Houng, J. Appl. Phys. 104, 053521 (2008).
    [33] Y. Chen, F. Jiang, L. Wang, C. Mo, Y. Pu, and W. Fang, J. Cryst. Growth 268, 71 (2004).
    [34] M. Ortega-Lo´pez, A. Avila-Garcı´a, M.L. Albor-Aguilera, and V.M. Sa´nchez Resendiz, Mater. Res. Bull. 38, 1241 (2003).
    [35] A. Kolmakov, and M. Moskovits, Ann. Rev. Mater. Res. 34, 151 (2004).
    [36] T. Yildirim, and M. R. Hartman, Phys. Rev. Lett. 95, 215504 (2005).
    [37] E.F. Kaelble, Handbook of X-rays (McGraw-Hill, New York, 1967).

    無法下載圖示 校內:2015-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE