| 研究生: |
黃柏穎 Huang, Bo-Ying |
|---|---|
| 論文名稱: |
應用熵增最小化於奈米流體在微渠道之數值最佳化 Numerical Optimization for Nanofluid Flow in Microchannels Using Entropy Generation Minimization |
| 指導教授: |
楊玉姿
Yang, Yu-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 奈米流體 、梯形微渠道 、數值最佳化 、基因演算法 、熵增率 、兩相模型 |
| 外文關鍵詞: | nanofluids, trapezoidal micro-channel heat sinks, numerical optimization, genetic algorithm method, entropy generation rate, two phase approach |
| 相關次數: | 點閱:126 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是使用數值方法探討以奈米流體為冷卻流體之梯形微渠道之
三維不可壓縮層流的流場與熱傳特性。在流體計算區域以控制體積法求解
那維爾-史托克方程式(Navier-Stokes equations)與共軛能量方程式。以
SIMPLE法來離散動量方程式與能量方程式。網格設計則採用正交非均勻
的交錯式網格。本研究中,數值計算的參數為入口速度(V = 4 m/s、6 m/s、
10 m/s),水力直徑Dh =106.66 μm,熱通量q"= 200 kW/ m2
將模擬結果與文獻中可用的模擬數據做仔細的驗證,且應用了全因子
法(full factorial design)配合基因演算法(genetic algorithm method)來最佳化微渠道的幾何形狀。文中定義三個設計參數分別為梯形上下底之比值(1.2 ≤α ≤ 3.6)、渠道深度與梯形上下底之差的比值(0.5 ≤ β ≤1.866)和奈米粒子體積分率(0% ≤φ ≤ 4%)。在等熱通量與固定入口速度的條件下,將
微渠道的系統總熵增最小化,經由最佳化方法後的結果獲得三組最佳幾何
形狀。數值結果可看出系統阻力熵增隨雷諾數增加而增加,而系統熱熵增
則降低,發現總熵增在入口速度Uin = 6 m/s 時有較小的結果。
此外,氧化銅/水奈米流體在層流強制對流下,由單相模型和兩相模
型的CFD 預測值進行比較。研究發現,單相模型和兩相模型預測幾乎有
著相同的流場表現,但在熱場則差異較大。對於研究的模型中,兩相模型
比單相模型在熱傳表現上有更高的提升。
This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow of a trapezoidal micro-channel heat sink using nanofluids as a cooling fluid. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method.
The coupling of the velocity and the pressure terms of momentum equations are solved by SIMPLE algorithm. Orthogonal non-uniform staggered grids are used for the establishment of mesh grids. In this study, numerical
computations are performed for inlet velocity ( Uin= 4 m/s、6 m/s、10 m/s),hydraulic diameterDh =106.66 μm,heat flux ( q" = 200k W/m2)
The numerical results are first validated with the available results in the literature, and a good agreement has been found. The present study demonstrates the numerical optimization of a trapezoidal micro-channel heat sink design using full factorial design and genetic algorithm method
(GA).Three design variables are selected from the geometric variables, the ratio of upper width and lower width of the micro-channel(1.2 ≤α ≤ 3.6)、the ratio of the height of the micro-channel to the difference between the upper and lower width of the micro-channel (0.5 ≤ β ≤1.866) 、volume fraction (0 ≤φ ≤ 4%) . The dimensionless entropy generation rate of a trapezoidal micro-channel is minimized for a constant heat flux and constant inlet velocity. There are three optimal results by genetic algorithm method (GA). Numerical results for the system dimensionless entropy generation rate show that system dimensionless friction entropy generation rate’s increase is consistence with Reynolds number; on the contrary, the higher the Reynolds
number the lower the system dimensionless thermal entropy generation rate. It is found that system dimensionless entropy generation rate is smaller at Uin= 6 m/s.
In addition, CFD predictions of laminar forced convection of CuO/water nanofluids by single-phase model and two-phase model are compared. It is found that single-phase model and two-phase model predict almost identical hydrodynamic fields but very different for thermal fields. For the problem under consideration, the two-phase model gives the higher enhancement than that of single-phase model.
[1] Mohammad Kalteh , Abbas Abbassi, Majid Saffar-Avval , Jens Harting, “Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel” International Journal of Heat and Fluid Flow , vol.32, 107–116, 2011.
[2] Tuckermann D.B., Pease R.F.W., “High-performance heat sinking for VLSI,” IEEE Electronic Device Letters, vol.2, pp. 126-129, 1981.
[3] Wu P.Y., and Little W.A., “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators, Cryogenics , vol.24, No. 8, pp. 273-277, 1983.
[4] Rahman M.M., and Gui F., “Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate,” Advances in Electronic Packaging: Thermal Management, Solder Technology, and Optoelectronic Packaging, ASME EEP-vol.4-2, pp.685-692,1993.
[5] Rahman M.M., and Gui F., “Design fabrication and testing of microchannel heat sink for aircraft avionics cooling,” Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, vol. 1, pp.1-6,1993.
[6] Peng X.F., and Peterson G.P., “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Experimental Thermal and Fluid Science, vol. 12, pp. 98-104, 1996.
[7] Fedorov A.G., Viskanta R., “Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging”, International Journal of Heat and Mass Transfer , vol. 43, pp. 399-415, 2000.
[8] Kawano K., Minakami K., Iwasaki H., and Ishizuka M., “Development of microchannels heat exchanging,” in: Proceedings of the ASME Heat Tranfer Division: Application of Heat Transfer in Equipment, Systems, and Education, vol. 3, pp. 173-180, 1998.
[9] Qu W., Mala G.M., and Li D., “Pressure-driven water flows in trapezoidal silicon microchannels,” International Communications in Heat and Mass Transfer, vol. 43, pp. 353-364, 2000.
[10] Qu W., Mala G. M., and Li D., “Heat transfer for water flow in trapezoidal silicon microchannels,” International Communications in Heat and Mass Transfer, vol. 43, pp. 3925-3936, 2000.
[11] Wu H.Y., and Cheng P., “An experimental study of convective heat transfer in silicon microchannels with different surface conditions,” International Journal of Heat and Mass Transfer, vol. 46, pp. 2547-2556, 2003.
[12] Das, S.K., Choi, S.U.-S., Patel, H.E., Heat transfer in nanofluids – a review, Heat Transfer Engineering, vol. 37, pp. 3–19, 2006
[13] Wang, J., Wang, M., Li, Z., A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer, International Journal of Thermal Sciences, vol. 46, pp. 228–234, 2007.
[14] Yu, W.H., France, D.M., Routbort, J.L., Choi, S.U.S., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, vol. 29, pp. 432–460, 2008.
[15] Özerinç, S., Kakaç, S., YazIcIoǧlu, A.G., Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluidics and Nanofluidics, vol. 8, pp. 145–170, 2010.
[16] Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, FED-231/MD-66, pp. 99–105, 1995.
[17] Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H., Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon, International Journal of Heat and Fluid Flow, vol.28, pp.1492–1506, 2007.
[18] Einstein, A., Investigation on the Theory of Brownian Movement, Dover, New York, 1956.
[19] Ho, C.J., Wei, L.C., Li, Z.W., An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid, Applied Thermal Engineering, vol. 30, pp. 96–103, 2010.
[20] Lee, S.W., Park, S.D., Kang, S., Bang, I.C., Kim, J.H., Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, International Journal of Heat and Mass Transfer vol.54, pp.433–438, 2011.
[21] H.A. Mohammed, P.Gunnasegaran, N.H.Shuaib, Heat transfer in rectangular microchannels heat sink using nanofluids , International Journal of Heat and Mass Transfer, vol. 37, pp.1496-1503, 2010.
[22] Jie Li,Clement Kleinstreuer , Thermal performance of nanofluid flow in microchannels , Heat and Fluid Flow, vol. 29, pp. 1221-1232, 2008.
[23] Pawan K. Singh , P.V. Harikrishna , Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel , ASME, Journal of Heat Transfer , vol.133, 121701, 2011
[24] Liu, D., and Garimella, S.V., “Analysis and optimization of the thermal performance of microchannel heat sinks,” International Journal of Numerical Methods Heat Fluid Flow, vol.15, No. 1, pp. 7-26, 2005.
[25] Li J. and Peterson G. P. “Bud”, “Geometric optimization of a micro heat sink with liquid flow,” IEEE Transaction on Components and Packaging Technologies, vol. 29, No. 1, pp. 145-154, 2006.
[26] Husain A., and Kim K.Y., “Shape optimization of micro-channel heat sink for micro-electronic cooling,” IEEE Transaction on Components and Packaging Technologies, vol. 31, No.2, pp. 322-330, 2008.
[27] Husain A., and Kim K.Y., “Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models,” Applied Thermal Engineering, vol. 30, pp. 1683-1691, 2010.
[28] Bejan,A., Entropy Generation Minimization, the Method of Thermodynamic Optimiztion of Finite-Size System and Finite-Time Processess”, CRC, Boca Raton, 1996.
[29] Bejan,A., “Fundamentals of exergy analysis, entropy generation minimization, and generation of flow architecture”, Int. J. Energy Res., 26, pp.0-43,2002.
[30] Jie Li , Clement Kleinstreuer, “Entropy generation analysis for nanofluid flow in microchannels”, ASME, Journal of Heat Transfer, vol.133, 121701, 2011.
[31] Brinkman, H.C., “The viscosity of concentrated suspensions and solutions”, Journal of Chemical Physics, vol. 20, pp. 571–581, 1952.
[32] Ishii M. , Mishima K. , “Two-fluid dynamic theory of two-phase flow,” Paris:Eyrolles,1975
[33] Hao, Y.L., Tao, Y.X., “A numerical model for phase-change suspension flow inmicrochannels”, Numer. Heat Transfer, Part A , vol.46, pp. 55–77, 2004.
[34] Kuipers, J.A.M., Prins, W., van Swaaij, W.P.M., “Numerical calculation of wall to-bed heat-transfer coefficients in gas-fluidized beds”, AIChE J., vol. 38, pp.1079–1091, 1992.
[35] Patankar S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, pp. 124-134, 1980.
[36] Patankar S.V., Spalding D.B., “A calculation process for heat, mass and momentum transfer in three-dimension parabolic flows,” International Journal Heat Mss Transfer, vol. 15, pp. 1787-11806, 1972.