簡易檢索 / 詳目顯示

研究生: 林恆如
Lin, Heng-Ju
論文名稱: 體積流率變化對微管內流體非穩態流動特性之分析
An Analysis of Unsteady Flow through Microtubes with a Given Volume Flow Rate Variation
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 75
中文關鍵詞: 微流體學拉普拉斯轉換非穩態流動滑動流動
外文關鍵詞: slip flow, unsteady flow, Laplace transform, microfluidics
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文研究微流體(microfluidics)管內流動,在不同體積流率下,流體稀薄化(rarefaction)對微管內非穩態流動(unsteady)的影響。文中分析體積流率變化與壓力變化的關係,包含如下四種實例:(1)梯形活塞運動(trapezoidal piston motion);(2)等加速度(constant acceleration);(3)突然被啟動之流動(impulsively started flow);(4)突然被堵住之完全發展流動(impulsively blocked fully developed flow)。藉由拉普拉斯轉換技巧(Laplace transform technique),由管內流非穩態動量方程式推導出速度(velocity)與壓力梯度(pressure gradient)關係的解析解。分析過程我們以"肯德森數" (Knudsen number) 代表流體稀薄化程度,所得結果以圖形表示,並與連體無滑動邊界之結果相比較。得到以下結果,對於四種不同體積流率下的實例,當稀薄化效應越大,管壁的滑動現象越明顯,相對地使邊界速度也增加,在管內的速度反而減小;稀薄化效應對壓力梯度值的影響,在不同的實例中則有不同的變化。

      In this study,the effects of rarefaction of unsteady flow through the microtubes for arbitrary volume flow rate are studied. The relationship between the change of volume flow rate and the change of pressure is analyzed under 4 different cases:(1)trapezoidal piston motion, (2)constant acceleration, (3)impulsively started flow, and(4) impulsively blocked fully-developed flow. The analytical solution of the velocity and pressure gradient of momentum equation of unsteady flow in microtube are solved by using the Laplace transform technique. During the analysis process, the Knudsen number( ) is used, to show the level of rarefaction. The results are presented graphically and compared to the results of continuum under no-slip condition. Form the results, we found that, the effects of wall-slip becomes significant with increasing the rarefaction. The boundary velocity also increases whereas the velocity of the tube will decrease with the same condition. The influence of the rarefaction for the pressure gradient is varied for different cases.

    中文摘要........................................Ⅰ 英文摘要........................................Ⅱ 誌謝............................................Ⅲ 圖目錄..........................................Ⅵ 符號說明........................................Ⅸ 第一章 前言.......................................1 1-1文獻回顧.......................................2 1-2 研究動機......................................3 1-3 論文結構......................................4 第二章 理論分析...................................6 2-1 問題描述......................................6 2-1-1 統御方程式..................................7 2-1-2 邊界條件及初始條件..........................8 2-2 實例1:梯形活塞運動..........................12 2-2-1 速度解析解.................................13 2-2-2 壓力梯度解析解.............................16 2-3 實例2:等加速度..............................20 2-3-1 速度解析解.................................20 2-3-2 壓力梯度解析解.............................20 2-4 實例3:突然被啟動之流動......................21 2-4-1 速度解析解.................................21 2-4-2 壓力梯度解析解.............................21 2-5 實例4:突然被堵住之完全發展流動..............22 2-5-1 速度解析解.................................22 2-5-2 壓力梯度解析解.............................22 第三章 結果與討論................................30 3-1 計算結果.....................................30 3-2流動特性分析..................................39 第四章 結論......................................62 參考文獻.........................................66 附錄A微流體學概論................................70 作者簡介、著作權聲明.............................75

    [1]Schaaf, S,., and Chambre, P.,‘‘Flow of rarefied gase,’’ Princeton University Press, Princeton.
    [2]Szymanski, P., ‘‘Some exact solutions of the hydrodynamic equations of a viscous Fluid in the case of a cylindrical tube,’’ J. Math. Pures Appl.,11, pp. 67–107, 1932.
    [3]Uchida, S., ‘‘The pulsating viscous flow superposed on the steady laminar motion of incompressible fluids in a circular Pipe,’’ Z. Angew. Math. Phys., 7, pp. 403–422, 1956.
    [4]Weinbaum, S., and Parker, K., ‘‘The laminar decay of suddenly blocked channel and pipe flows,’’ J. Fluid Mech., 69, pp. 729-752, 1975.
    [5]Das, D., and Arakeri, J. H., ‘‘Unsteady laminar duct flow with a given volume flow rate variation,’’ ASME J. APP1 Mech., 67, pp. 274–281, 2000.
    [6]Chen, Chun-I, Chen C.-K. and Yang Y.-T. “Unsteady unidirectional flow of second grade fluid between the parallel plates with different given volume flow rate conditions,” Applied Mathematics and Computation, 137, pp. 437-450, 2003.
    [7]Chen, Chun-I, Chen C.-K. and Yang Y.-T. “Unsteady unidirectional flow of a Maxwell fluid in a circular duct with different given volume flow rate conditions,”Proc. Instn. Mech. Engrs. Part C: J. Mechanical Engineering Science, 216, pp. 583-590, 2002.
    [8]王奕婷, “流體在微渠道流動之數值模擬,” 中山大學機械與機電工程研究所碩士論文,2003.
    [9]Eckert, E. R. G., and Drake, R. M., Jr., ‘‘Analysis of heat and mass transfer,’’ McGraw-Hill, New York, Chapter 11, 1972.
    [10]Rohsenow, W. M., and Hartnett, J. P., ‘‘Handbook of heat transfer,’’ McGraw-Hill, New York, Chapter 9, 1973.
    [11]George Em Karnidakis and Ali Beskok, ‘‘Micro Flow,’’ Springer, New York, 2002.
    [12]Goniak, R., and Duffa, G., ‘‘Corrective term in wall slip equations for Knuden layer,’’ J. Thermophys, 9, pp. 383-384, 1995
    [13]Das, D., and Arakeri, J. H., ‘‘Transition of inflectional velocity profiles with reverse flow,’’ J. Fluid Mech., 374, pp. 251–283, 2000.
    [14]Wemersley, J. R., ‘‘Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,’’ J.Physiol., 127, pp. 553–563, 1955.
    [15]Collins, J. I., ‘‘Inception of turbulence at the bed under periodic gravity waves.,’’ J. Geophys. Res. 18, pp. 6007-6014, 1963.
    [16]Cebeci, T., ‘‘Unsteady separation. In proc. symp. on numerical and physical aspects of aerodynamic flows,’’ pp. 265-277. Springer, 1982.
    [17]John. Harley, Haim Bau, ‘‘Fluid flow in micro and submicron size channels.,’’ IEEE, pp. 25-28, 1989.
    [18]Lefebvre, P. J., and White, F. M., ‘‘Experiments on transition to turbulence in a constant-acceleration pipe flow,’’ ASME J. Fluids Eng., 111, pp. 428–432, 1989.
    [19]Akhavan, R., Kamm, R. D., and Shapiro, A. H., ‘‘An Investigation of transition to turbulence in bounded oscillatory stokes flows, part 1—experiments,’’ J. Fluid. Mech., 225, pp. 395–422, 1991.
    [20]S. B. Choi, R. F. Barron, and R. O. Warrington, ‘‘Fluid flow and heat transfer in microtubes,’’ ASME. Proc. 32, pp. 123-134, 1991.
    [21]E. B. Arkilic, K. S. Breuer, and M. A. Schmidt, ‘‘Gases flow in micro channels.,’’ ASME, Inter. Mech. Engrs. Congress and Exposition, Chicago, Illinois, FED. 197, pp. 57-66, 1994.
    [22]K. C. Pong and C. M. Ho, ‘‘Non-linear pressure distribution in uniform microchannels,’’ ASME, Application of Microfabrication to Fluid Mechanics, pp. 51-56, 1994.
    [23]Das, D., Arakeri, J. H. & Vashist, T. K., ‘‘Linear stability analysis of wall bounded velocity profiles with inflection point.,’’ In Proc. Sixth Asian Congress of Fluid Mechanics, pp. 1266-1269, 1995.
    [24]J. Harley, Y. Huang, H. Bau, and J. N. Zemel,‘‘Gas flow in microchannel,’’ J. Fluid Mech., 284, pp. 257-274, 1995.
    [25]R. Zengerle, W. Geiger, M. Richter, J. Ulrich, S. Kluge, A. Richter ‘‘Transient measurements on miniaturized diaphragm pumps in microfluid systems.,’’ Sensors and Actuators A: Physical, 47, Issue: 1-3, March - April, pp. 557-561, 1995.
    [26]A. Beskok, and G. E. Karniadakis, ‘‘Rarefaction and Compressibility Effect in Gas Microflows,’’ Journal of Fluids Engineering, Transactions of the ASME, 118, No. 3, pp. 448-455, 1996.
    [27]Cassel, K. W., Smith, F. T. & Walker, J. D. A. ‘‘The onset of instability in unsteady boundary-layer separation.,’’ J. Fluid Mech. 315, pp. 223-256, 1996.
    [28]Das, D., Ph.D. thesis, Department of Mechanical Engineering,I.I.Sc.,Bangalore, India, 1998.
    [29]莊炎烈, ‘‘微小通道之氣體流動分析,’’ 淡江大學機械工程研究所碩士論文,1995.

    下載圖示 校內:立即公開
    校外:2004-07-06公開
    QR CODE