簡易檢索 / 詳目顯示

研究生: 楊文雄
Yang, Wen-Hsiung
論文名稱: 旋翼之數值模擬
Numerical Simulation of Helicopter Rotor in Hover
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 68
中文關鍵詞: 旋翼平行處理
外文關鍵詞: parallel computation, hovering rotor
相關次數: 點閱:86下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 題 目:旋翼之數值模擬
    研 究 生:楊 文 雄
    指導教 授:林 三 益
    本文研究的目的在於利用數值方法模擬分析直昇機旋翼之流場,數值方法是以上風的有限體積法來求解穩態的威爾-史托客方程式(Navier-Stokes equations),其中在對流項中採用三階的上風有限體積法,在黏滯項中採用中央差分有限體積法,進而利用交錯方向隱式法(ADI)對時間積分,並加入隱式殘值平滑性(implicit residual smoothing)加速穩態計算的收斂性,在非慣性座標中,分別採用絕對速度和相對速度當變數,並對其結果做討論。
    本數值研究是以兩片轉動葉片之物理模型、採用週期性格點技巧,分別對零升力及有升力轉子做分析及計算,其結果與實驗值都相當吻合,而所有的數值計算是在32台叢集的電腦中使用平行處理來做,並對其多個區塊的方法及之間資料的傳遞做探討,進而得到不錯的平行效率。
    關鍵字:旋翼,有限體積法,平行處理,多個區塊。

    Subject : Numerical Simulation of Helicopter Rotor in Hover
    Graduate Student : Wen-Hsiung Yang
    Advisor : San-Yih Lin
    A numerical method is developed to study the hovering rotor flowfields. The method solves the compressible Navier-Stokes equations. It uses a third-order upwind finite-volume scheme for discretizing the convective terms and a second-order central finite-volume scheme for discretizing the viscous terms. A DDADI time integration coupling with an implicit residual smoothing is used for achieving fast convergence. Two types of numerical formulas by using the relative and absolute velocity as flow variables in a non-inertial reference frames are introduced and compared.
    The numerical simulations are performed for a two-blade rotor on periodic O-O grid topologies for non-lifting and lifting rotors. Computational solutions show good agreement with the experiment data. All of the simulations are calculated on the 32-nodes PC cluster environment by using MPI. The multi-zone technique and data passing between processors are investigated.The efficiency of parallel computation is good.
    Keywords: Hovering rotor, Finite-volume scheme, Parallel Computation, Multi-zone Technique.

    目 錄 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 致 謝………………………………………………………………Ⅲ 目 錄………………………………………………………………Ⅳ 圖表目錄………………………………………………………………Ⅵ 符號說明………………………………………………………………Ⅹ 第一章 緒 論…………………………………………………………1 第二章 數值方法………………………………………………………5 2.1統御方程式…………………………………………………..5 2.2空間差分……………………………………………………..7 2.3時間積分……………………………………………………..11 2.4 DDADI數值法…………………………………………….…12 2.5邊界條件…………………………………………………….14 2.6數值方法加速收斂…………………………………………14 2.7收斂標準……………………………………………………15 2.8紊流模式……………………………………………………15 第三章 數值測試……………………………………………………18 第四章 結果與討論…………………………………………………21 4.1相對速度與絕對速度之比較………………………………21 4.2格點生成……………………………………………………22 4.3格點相關性分析……………………………………………25 4.4 Euler與Navier-Stokes結果之比較………………………26 4.5平行計算……………………………………………………28 4.6翼尖渦流之分析……………………………………………30 第五章 結論……………………………………………………34 參考文獻…………………………………………………………36 圖…………………………………………………………………40 表…………………………………………………………………68 自述………………………………………………………………69 著作權聲明………………………………………………………70 圖 表 目 錄 圖3.1 數值計算結果,Ms=0.5、Re= (a) 收斂殘值圖................................40 (b)邊界層之速度分佈圖.....................40 圖3.2 數值計算結果,Ms=0.3、Re= (a) inner region 對 5之曲線圖.............41 (b) 剪應力係數分佈圖..........................41 圖3.3 NAZA0012翼剖面之無限翼展 (a)及(b)O型格點示意圖.........................42 (c)等密度線之分佈圖............................42 (d)收斂殘值圖..................................43 (e)壓力係數分佈圖..............................43 圖4.1 相對速度與絕對速度所得之壓力係數分佈比較圖.....44 圖4.2 旋翼之物理模型.................................45 圖4.3 O-O型格點系統...........................45 圖4.4 O-O型格點系統之根部與翼尖格點分佈圖 (a)根部格點 (b)翼尖格點 ...................46 圖4.5 零升力轉子之各翼剖面格點架構圖 (a)z/R=0(根部).................................47 (b)由z/R 大於等於0.5至z/R等於1(翼尖)間......47 (c)(d)(e) 由z/R大於0至z/R小於0.5間.........47 圖4.6 升力轉子之各翼剖面格點架構圖 (a)z/R=0(根部).................................48 (b)由z/R 大於等於0.5至z/R等於1(翼尖)間......48 (c)(d)(e) 由z/R大於0至z/R小於0.5間.........48 圖4.7 格點比較..................................49 圖4.8 格點比較........................................50 圖4.9 Mt=0.52、0度攻角以Euler計算之壓力係數分佈圖...51 圖4.10 Mt=0.44、有效攻角( )為4.2度時,Euler 與 Navier-Stokes 之壓力係數分佈比較...............................52 圖4.11 Mt=0.877、有效攻角( )為4.2度時,Euler 與Navier-Stokes 之壓力係數分佈比較...............................53 圖4.12 Mt=0.877、攻角為8度時, Navier-Stokes 所得到之等壓力線分佈圖.......................................54 圖4.13 Mt=0.877、8度攻角,以8台跑平行之壓力係數分佈圖(Euler) ................................................55 圖4.14 平行計算之收斂殘值圖.............................56 (上) 4台 (下) 8台 圖4.15 翼尖渦流之流線圖................................57 圖4.16 翼尖渦流之流線圖................................58 (上)下視圖 (下)側視圖 圖4.17 葉片尖端之流線分佈圖............................59 (上) 正視圖 (下)側視圖 圖4.18 絕對速度之流場..................................60 (上) z y切面之示意圖 (下) x=0之z y 切面之流線分佈與速度向量圖 圖4.19 絕對速度之流場..................................61 (上) x=0.5之z y切面之流線分佈與速度向量圖 (下) x=1之z y切面之流線分佈圖與速度向量圖 圖4.20 絕對速度之流場..................................62 (上) z x切面之示意圖 (下) y=0之z x切面之流線分佈圖與速度向量圖 圖4.21 絕對速度之流場..................................63 (上) x y切面之示意圖 (下) z=4.08之x y切面之流線分佈圖 圖4.22 絕對速度之流場.................................64 (上) z=5.34之x y切面之流線分佈圖 (下) z=6.01之x y切面之流線分佈圖 圖4.23 採相對速度所得之流線圖..........................65 圖4.24 相對速度的流場..................................66 (上) z y切面之示意圖 (下) x=0之z y 切面之流線分佈與速度向量圖 圖4.25 相對速度的流場...................................67 (上) x=0.5之z y切面之流線分佈與速度向量圖 (下) x=1之z y切面之流線分佈圖與速度向量圖

    參 考 文 獻
    1. Agarwal, R. K., and Deese, J. E., “Euler Calculations for Flowfield of a Helicopter Rotor in Hover,” Journal of Aircraft, Vol. 24, No. 4., pp. 231-238, 1987.
    2. Allen, C. B., and Jones, D. P., “Parallel Implementation of An Upwind Euler Solver for Hovering Rotor Flows,” The Aeronautical J., pp. 129-138, 1999.
    3. Allen, C. B., “Mutigrid Acceleration of An Upwin Euler Solver for Hovering Rotor Flows,” The Aeronautical J., pp. 517-524, 2001.
    4. Baldwin, B.S., and Lomax, H., “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA Paper 78-0257, Jan. 1978.
    5. Bardina, J., and Lombard, C. K., “Three Dimensional Hypersonic Flow Simulations with The CSCM Implicit Upwind Navier-Stokes Method,” AIAA Paper 87-1114
    6. Cardonna, F. X., and Tung, C., “Experimental and Analytical Studies of Model Helicopter Rotor in Hover,” NASA TM -81232, Sept. 1981.
    7. Chen, C. S., Velkoff, H. R., and Tung, C., “Free-Wake Analysis of a Rotor in Hover,” AIAA Paper 87-1245, June 1987.
    8. Russell, Justin W., and Sankar, Lakshmi N., “High Accuracy Studies of the Tip Vortex Structure from a Hovering Rotor,” Progress Report for Sept 1, 1996–December 31,1996.
    9. Klopher, G. H., and Hung, C. M., “A Diagonalized Diagonal Dominant Alternating Direction Implicit (D3ADI) Scheme and Subiteration Correction,” AIAA Paper 98-2824, 1998.
    10. Kramer, E., Hertel, J., and Wagner, S., “Computation of Subsonic and Transonic Helicopter Rotor Flow Using Euler Equation,” Vertica, Vol. 12, No. 3, pp. 279-291, 1988.
    11. Lin, S. Y., and Chin, Y. S., “Comparison of Higher Resolution Euler Schemes for Aeroacoustic Computations,” AIAA Journal, Vol. 33, No. 2, pp. 237-245. 1995.
    12. Osher, S., and Chakravarthy, S. R., “Very High Order Accurate TVD Scheme,” ICASE Report No.84-44, 1984 also The IMA Volumes in Mathematics and Its applications, Vol. 2, pp. 229-274, 1985.
    13. Roberts, T. W., and Murman, E. M., “Solution Method for a Hovering Helicopter Rotor Using the Euler Equations,” AIAA Paper 85-0436, Jan. 1985.
    14. Roe, P. L., “Approximate Riemann Solver, Parameter Vector and Difference Scheme.” Journal of Computation Physics, Vol. 43, No.
    2, 1981.
    15. Srinivasan, G. R., and McCroskey, W. J., “Navier-Stokes Calculations of Hovering Rotor Flowfields,” Journal of Aircraft, Vol. 25, No. 10, pp. 865-874, 1988.
    16. Srinivasan, G. R., Badeder, J. D., Obayashi, S., and McCroskey, W. J., “Flowfield of a Lifting Rotor in Hover: A Navier-Stokes Simulations,” AIAA Journal, Vol. 30, No. 10, pp. 2371-2378, 1992.
    17. Srinivasan, G. R., Chyu, W.J., and Steger, J. L., “Computation of Simple Three-Dimensional Wing-Vortex Interaction in Transonic Flow,” AIAA Paper 81-1206, June 1981.
    18. Thibert, J. J., Granjacques, M. and Ohman, L.H., “NACA0012 Airfoil, AGARD Advisory Report No. 138,Experimental Data Base for Computer Program Assessment,” pp. A1-9, 1979.
    19. Wagner, S., “On The Numerical Prediction of Rotor Wake Using Linear and Non-Linear Methods,” AIAA Paper 2000-0111, 2000.
    20. Weightardt, K., “Flat Plate Flow,Proceedings of AFOSR-IFP Stanford Conference on Computation of Turbulent Boundary Layers ,” Edited by Coles, D. E., and Hirst, E. A., Vol. 2, pp.98-123. 1969.
    21. Zhong, B., and Qin, N., “Non-Inertial Multiblock Navier-Stokes calculation for Hovering Rotor Flowfields using Relative Vlocity Approach,” The Aeronautical J., pp. 379-389,2001.
    22. 黃百毅,”雙方程式紊流模式分析平板之過度流場” 成功大學航太所博士論文, 2001年12月。
    23. 余重信,”有限體積法模擬不可壓縮之內外流場” 成功大學航太所博士論文, 2002年1月。

    下載圖示 校內:立即公開
    校外:2002-08-07公開
    QR CODE