簡易檢索 / 詳目顯示

研究生: 王婷筠
Wang, Ting-Yun
論文名稱: 比較動靜脈血流在去組蛋白乙醯酶(HDAC)和組蛋白3離氨酸9(H3K9)甲基化造成靜脈內皮的損傷
Comparison of HDAC and H3K9 methylation between arterial and venous flow for venous endothelial damage
指導教授: 吳佳慶
Wu, Chia-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 48
中文關鍵詞: 血流剪切力靜脈內皮細胞去組蛋白乙醯酶組蛋白3離氨酸9甲基化
外文關鍵詞: Shear stress, venous endothelial cell, HDAC, H3K9 methylation
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在靜脈移植手術中,當靜脈轉換於動脈的血流微環境時會誘導早期靜脈內皮細胞剝落及損傷以至於造成血管再窄化。近年來,已有文獻提出在動脈內皮細胞中,不同血流剪切力像是動脈層流剪切力(Arterial laminar shear stress, ALS)和震盪剪切 (Oscillatory shear, OS) 會透過去組蛋白乙醯酶(Histone deacetylases, HDACs) 和組蛋白3離氨酸9甲基化(H3K9 methylation)等表觀遺傳學(Epigenetic) 進而調控細胞週期和發炎反應。然而,HDAC3和H3K9me3是否參與調節動脈層流所導致的靜脈內皮細胞損傷目前還尚未清楚。因此我們假設動靜脈間血流剪切力轉換而導致不同HDACs以及H3K9me3的表現造成靜脈內皮細胞損傷。初步結果中,發現當動脈內皮細胞受到ALS刺激下會有高度表現H3K9me3並且促使細胞維持在G0時期。當靜脈內皮細胞處在ALS下則會改變其細胞型態呈現圓球狀以及H3K9me3 、HDAC3和HDAC5的低蛋白表現並增加發炎蛋白(VCAM-1)的表現。當在動脈內皮細胞中抑制HDAC表現時會導致發炎反應與細胞損失,其結果與ALS所引發的靜脈內皮細胞反應類似,同時觀察到藉由ITSA-1 (HDAC activator)活化HDAC的表現可以預防ALS所誘發之靜脈損傷。此外,已知粘著斑激酶 (Focal Adhesion Kinase, FAK)也參與在血流剪切力調控內皮細胞的型態,且在此研究中觀察到靜脈內皮細胞中加入ITSA-1會增加FAK磷酸化的活性以及當提高靜脈內皮細胞中FAK磷酸化表現時,亦可觀察到H3K9me3的表現增加。因此本篇研究中觀察到透過ITSA-1所增加H3K9me3以及HDAC的表現可以阻止靜脈移植病理的誘發。

    A transition of flow microenvironments from vein to artery in vein graft surgery induces venous endothelial cell (vEC) peel-off in early stage and results in restenosis. Recently, different shear stresses (arterial laminar shear stress (ALS) and oscillatory shear (OS)) mediate the distinct cell cycle and inflammation through epigenetic controls like histone deacetylases (HDACs) and the methylation on lysine 9 of histone (H3K9) in arterial EC. Whether the roles of H3K9me3 and HDAC in vEC damage under ALS are still unknown. We hypothesized that the different response of HDACs and H3K9me3 might cause vEC damage under venous-arterial flow transition. We found that arterial EC showed increase of H3K9me3 expression and was kept in G0 phase after being subjected to ALS. Whereas, vEC showed round-up damage morphology under ALS with the decreases of H3K9me3, HDAC3, and HDAC5 and increase of vascular cell adhesion protein 1 (VCAM-1). Inhibition of HDACs activity by specific inhibitor in arterial EC caused similar ALS-induced inflammation and cell loss as vEC. In addition, activation of HDACs and H3K9me3 via ITSA-1in vEC could prevented the ALS-induced cell peel-off and reduced the VCAM-1 expression. Besides, shear stress modulates EC morphology by regulation of focal adhesion kinase (FAK). Our results also showed that ITSA-1 could increase p-FAK in vEC under ALS. We further perturbed the activity of p-FAK and found that the increase of p-FAK restored ALS-induced H3K9me3 in vEC. Therefore, we found that the abnormal mechanoresponses of H3K9me3 and HDAC in vEC after being subjected to ALS could be reversed by ITSA-1 treatment which prevented the vein graft pathogenesis.

    Abstract I 中文摘要 II Introduction 1 1.1 Endothelial cell and Shear stress 1 1.2 Shear stress and cell cycle 3 1.3 Epigenetic 4 1.4 Vein graft disease 9 1.5 Loss of anchorage in ECs 10 Specific Aims 12 Materials and Methods 13 2.1 Cell Culture 13 2.2 In vitro shear experiment 13 2.3 Time-course experiment 14 2.4 Western blot 14 2.5 Transfection by electroporation 17 2.6 Fluorescence resonance energy transfer (FRET) and H3K9 biosensor 17 Results 19 3.1 Flow modulated H3K9me3 expressions play an important role in cell cycle regulation 19 3.2 The different effect between arterial and venous EC under ALS 22 3.3 Inhibition of HDAC activity to arterial EC reversed the artheroprotective morphology and induced the cell inflammation under ALS 26 3.4 Treating HDAC activator by ITSA-1 restored the pathological responses of ALS in vEC 29 3.5 The effects of FAK activity on H3K9me3 levels under ALS 31 Discussion 35 Conclusion 40 References 41

    Abi Khalil, C. (2014). The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis 5, 178-87.
    Ajami, N. E., Gupta, S., Maurya, M. R., Nguyen, P., Li, J. Y., Shyy, J. Y., Chen, Z., Chien, S. and Subramaniam, S. (2017). Systems biology analysis of longitudinal functional response of endothelial cells to shear stress. Proc Natl Acad Sci U S A 114, 10990-10995.
    Akimoto, S., Mitsumata, M., Sasaguri, T. and Yoshida, Y. (2000). Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ Res 86, 185-90.
    Alvarez-Errico, D., Vento-Tormo, R., Sieweke, M. and Ballestar, E. (2015). Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 15, 7-17.
    Baccarelli, A., Rienstra, M. and Benjamin, E. J. (2010). Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet 3, 567-73.
    Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-37.
    Bayarsaihan, D. (2011). Epigenetic mechanisms in inflammation. J Dent Res 90, 9-17.
    Bhaskara, S., Knutson, S. K., Jiang, G., Chandrasekharan, M. B., Wilson, A. J., Zheng, S., Yenamandra, A., Locke, K., Yuan, J. L., Bonine-Summers, A. R. et al. (2010). Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 18, 436-47.
    Caltagarone, J., Jing, Z. and Bowser, R. (2007). Focal adhesions regulate Abeta signaling and cell death in Alzheimer's disease. Biochim Biophys Acta 1772, 438-45.
    Carragher, N. O. and Frame, M. C. (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14, 241-9.
    Case, L. B., Baird, M. A., Shtengel, G., Campbell, S. L., Hess, H. F., Davidson, M. W. and Waterman, C. M. (2015). Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 17, 880-92.
    Chang, Y. J., Huang, H. C., Hsueh, Y. Y., Wang, S. W., Su, F. C., Chang, C. H., Tang, M. J., Li, Y. S., Wang, S. H., Shung, K. K. et al. (2016). Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention. Sci Rep 6, 22147.
    Chiba, T., Saito, T., Yuki, K., Zen, Y., Koide, S., Kanogawa, N., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y. et al. (2015). Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int J Cancer 136, 289-98.
    Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292, H1209-24.
    dela Paz, N. G. and D'Amore, P. A. (2009). Arterial versus venous endothelial cells. Cell Tissue Res 335, 5-16.
    Dominguez, M. and Berger, F. (2008). Chromatin and the cell cycle meet in Madrid. Development 135, 3475-80.
    Dunn, J., Thabet, S. and Jo, H. (2015). Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis. Arterioscler Thromb Vasc Biol 35, 1562-9.
    Ephstein, Y., Singleton, P. A., Chen, W., Wang, L., Salgia, R., Kanteti, P., Dudek, S. M., Garcia, J. G. and Jacobson, J. R. (2013). Critical role of S1PR1 and integrin beta4 in HGF/c-Met-mediated increases in vascular integrity. J Biol Chem 288, 2191-200.
    Falkenberg, K. J. and Johnstone, R. W. (2014). Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13, 673-91.
    Fraineau, S., Palii, C. G., Allan, D. S. and Brand, M. (2015). Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J 282, 1605-29.
    Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P. and Kouzarides, T. (2003). The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278, 4035-40.
    Ge, G., Wu, J., Wang, Y. and Lin, Q. (2002). Activation mechanism of solubilized epidermal growth factor receptor tyrosine kinase. Biochem Biophys Res Commun 290, 914-20.
    Gimbrone, M. A., Jr. and Garcia-Cardena, G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res 118, 620-36.
    Givens, C. and Tzima, E. (2016). Endothelial Mechanosignaling: Does One Sensor Fit All? Antioxid Redox Signal 25, 373-88.
    Go, Y. M., Son, D. J., Park, H., Orr, M., Hao, L., Takabe, W., Kumar, S., Kang, D. W., Kim, C. W., Jo, H. et al. (2014). Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei. PLoS One 9, e108346.
    Goodsell, D. S. (2003). The molecular perspective: epidermal growth factor. Oncologist 8, 496-7.
    Guo, D., Chien, S. and Shyy, J. Y. (2007). Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ Res 100, 564-71.
    Haberland, M., Montgomery, R. L. and Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10, 32-42.
    Hadi, H. A., Carr, C. S. and Al Suwaidi, J. (2005). Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1, 183-98.
    Heo, K. S., Berk, B. C. and Abe, J. (2016). Disturbed Flow-Induced Endothelial Proatherogenic Signaling Via Regulating Post-Translational Modifications and Epigenetic Events. Antioxid Redox Signal 25, 435-50.
    Heo, K. S., Chang, E., Le, N. T., Cushman, H., Yeh, E. T., Fujiwara, K. and Abe, J. (2013). De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ Res 112, 911-23.
    Heo, K. S., Le, N. T., Cushman, H. J., Giancursio, C. J., Chang, E., Woo, C. H., Sullivan, M. A., Taunton, J., Yeh, E. T., Fujiwara, K. et al. (2015). Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function. J Clin Invest 125, 1299-310.
    Huang, C. W., Huang, C. C., Chen, Y. L., Fan, S. C., Hsueh, Y. Y., Ho, C. J. and Wu, C. C. (2015). Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling. Biomed Res Int 2015, 862485.
    Huang, P. H., Chen, C. H., Chou, C. C., Sargeant, A. M., Kulp, S. K., Teng, C. M., Byrd, J. C. and Chen, C. S. (2011). Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Mol Pharmacol 79, 197-206.
    Hyun, K., Jeon, J., Park, K. and Kim, J. (2017). Writing, erasing and reading histone lysine methylations. Exp Mol Med 49, e324.
    Illi, B., Dello Russo, C., Colussi, C., Rosati, J., Pallaoro, M., Spallotta, F., Rotili, D., Valente, S., Ragone, G., Martelli, F. et al. (2008). Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling. Circ Res 102, 51-8.
    Illi, B., Nanni, S., Scopece, A., Farsetti, A., Biglioli, P., Capogrossi, M. C. and Gaetano, C. (2003). Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression. Circ Res 93, 155-61.
    Jiang, Y. Z., Jimenez, J. M., Ou, K., McCormick, M. E., Zhang, L. D. and Davies, P. F. (2014). Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo. Circ Res 115, 32-43.
    Kass, S. U., Landsberger, N. and Wolffe, A. P. (1997). DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 7, 157-65.
    Kawakami, E., Tokunaga, A., Ozawa, M., Sakamoto, R. and Yoshida, N. (2015). The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech Dev 135, 31-42.
    Koeller, K. M., Haggarty, S. J., Perkins, B. D., Leykin, I., Wong, J. C., Kao, M. C. and Schreiber, S. L. (2003). Chemical genetic modifier screens: small molecule trichostatin suppressors as probes of intracellular histone and tubulin acetylation. Chem Biol 10, 397-410.
    Kottakis, F., Polytarchou, C., Foltopoulou, P., Sanidas, I., Kampranis, S. C. and Tsichlis, P. N. (2011). FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 43, 285-98.
    Kuo, J. C. (2013). Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med 17, 704-12.
    Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-20.
    Lauberth, S. M., Nakayama, T., Wu, X., Ferris, A. L., Tang, Z., Hughes, S. H. and Roeder, R. G. (2013). H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021-36.
    Lee, D. Y., Lee, C. I., Lin, T. E., Lim, S. H., Zhou, J., Tseng, Y. C., Chien, S. and Chiu, J. J. (2012). Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A 109, 1967-72.
    Li, S., Butler, P., Wang, Y., Hu, Y., Han, D. C., Usami, S., Guan, J. L. and Chien, S. (2002). The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 99, 3546-51.
    Li, Y. S., Haga, J. H. and Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38, 1949-71.
    Lin, C. W., Jao, C. Y. and Ting, A. Y. (2004). Genetically encoded fluorescent reporters of histone methylation in living cells. J Am Chem Soc 126, 5982-3.
    Liu, B., Lu, S., Hu, Y. L., Liao, X., Ouyang, M. and Wang, Y. (2014). RhoA and membrane fluidity mediates the spatially polarized Src/FAK activation in response to shear stress. Sci Rep 4, 7008.
    Luo, S. W., Zhang, C., Zhang, B., Kim, C. H., Qiu, Y. Z., Du, Q. S., Mei, L. and Xiong, W. C. (2009). Regulation of heterochromatin remodelling and myogenin expression during muscle differentiation by FAK interaction with MBD2. EMBO J 28, 2568-82.
    Luo, W., Xiong, W., Zhou, J., Fang, Z., Chen, W., Fan, Y. and Li, F. (2011). Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43, 210-6.
    Mastroeni, D., Delvaux, E., Nolz, J., Tan, Y., Grover, A., Oddo, S. and Coleman, P. D. (2015). Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer's disease. Neurobiol Aging 36, 3121-3129.
    Mendelsohn, J. and Baselga, J. (2000). The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550-65.
    Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K. and Garcia, A. J. (2009). Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 20, 2508-19.
    Motwani, J. G. and Topol, E. J. (1998). Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97, 916-31.
    Pandey, D., Sikka, G., Bergman, Y., Kim, J. H., Ryoo, S., Romer, L. and Berkowitz, D. (2014). Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2. Arterioscler Thromb Vasc Biol 34, 1556-1566.
    Parkel, S., Lopez-Atalaya, J. P. and Barco, A. (2013). Histone H3 lysine methylation in cognition and intellectual disability disorders. Learn Mem 20, 570-9.
    Portela, A. and Esteller, M. (2010). Epigenetic modifications and human disease. Nat Biotechnol 28, 1057-68.
    Romer, L. H., Birukov, K. G. and Garcia, J. G. (2006). Focal adhesions: paradigm for a signaling nexus. Circ Res 98, 606-16.
    Ruoslahti, E. and Reed, J. C. (1994). Anchorage dependence, integrins, and apoptosis. Cell 77, 477-8.
    Shimokawa, H. and Satoh, K. (2014). Vascular function. Arterioscler Thromb Vasc Biol 34, 2359-62.
    Sieg, D. J., Hauck, C. R. and Schlaepfer, D. D. (1999). Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 112 ( Pt 16), 2677-91.
    Tan, M., Luo, H., Lee, S., Jin, F., Yang, J. S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N. et al. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016-28.
    Traub, O. and Berk, B. C. (1998). Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18, 677-85.
    van Essen, D., Zhu, Y. and Saccani, S. (2010). A feed-forward circuit controlling inducible NF-kappaB target gene activation by promoter histone demethylation. Mol Cell 39, 750-60.
    Villeneuve, L. M., Reddy, M. A., Lanting, L. L., Wang, M., Meng, L. and Natarajan, R. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A 105, 9047-52.
    Wang, W., Ha, C. H., Jhun, B. S., Wong, C., Jain, M. K. and Jin, Z. G. (2010). Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 115, 2971-9.
    Wang, Y. and Wang, N. (2009). FRET and mechanobiology. Integr Biol (Camb) 1, 565-73.
    Warboys, C. M., de Luca, A., Amini, N., Luong, L., Duckles, H., Hsiao, S., White, A., Biswas, S., Khamis, R., Chong, C. K. et al. (2014). Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 34, 985-95.
    Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. and Carragher, N. O. (2004). SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 24, 8113-33.
    Wolffe, A. P. and Matzke, M. A. (1999). Epigenetics: regulation through repression. Science 286, 481-6.
    Wu, C. C., Li, Y. S., Haga, J. H., Kaunas, R., Chiu, J. J., Su, F. C., Usami, S. and Chien, S. (2007). Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc Natl Acad Sci U S A 104, 1254-9.
    Wu, R., Wang, Z., Zhang, H., Gan, H. and Zhang, Z. (2017). H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res 45, 169-180.
    Xu, Y., Zhang, S., Lin, S., Guo, Y., Deng, W., Zhang, Y. and Xue, Y. (2017). WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res 45, D264-D270.
    Yan, M. S., Matouk, C. C. and Marsden, P. A. (2010). Epigenetics of the vascular endothelium. J Appl Physiol (1985) 109, 916-26.
    Yokoyama, Y., Hieda, M., Nishioka, Y., Matsumoto, A., Higashi, S., Kimura, H., Yamamoto, H., Mori, M., Matsuura, S. and Matsuura, N. (2013). Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci 104, 889-95.
    Zacharopoulou, N., Tsapara, A., Kallergi, G., Schmid, E., Tsichlis, P. N., Kampranis, S. C. and Stournaras, C. (2018). The epigenetic factor KDM2B regulates cell adhesion, small rho GTPases, actin cytoskeleton and migration in prostate cancer cells. Biochim Biophys Acta 1865, 587-597.
    Zeng, L., Zhang, Y., Chien, S., Liu, X. and Shyy, J. Y. (2003). The role of p53 deacetylation in p21Waf1 regulation by laminar flow. J Biol Chem 278, 24594-9.
    Zhang, J. and Zhong, Q. (2014). Histone deacetylase inhibitors and cell death. Cell Mol Life Sci 71, 3885-901.
    Zhang, Q. J. and Liu, Z. P. (2015). Histone methylations in heart development, congenital and adult heart diseases. Epigenomics 7, 321-30.
    Zhao, X., Peng, X., Sun, S., Park, A. Y. and Guan, J. L. (2010). Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J Cell Biol 189, 955-65.
    Zhivotovsky, B. and Orrenius, S. (2010). Cell cycle and cell death in disease: past, present and future. J Intern Med 268, 395-409.
    Zhou, B., Margariti, A., Zeng, L. and Xu, Q. (2011). Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovasc Res 90, 413-20.
    Zippo, A., De Robertis, A., Serafini, R. and Oliviero, S. (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9, 932-44.

    無法下載圖示 校內:2023-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE