簡易檢索 / 詳目顯示

研究生: 高騏勲
Gau, Chi-Shiun
論文名稱: 具光柵結構之新型雙模干涉分波多工器
A Novel Wavelength Division Multiplexer Using Grating-Assisted Two-Mode Interference
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 48
中文關鍵詞: 雙模干涉光柵光子能隙有限差分時域法
外文關鍵詞: WDM, finite difference time domain, optical grating, two-mode interference, photonic band gap
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文中,將首次提出一種具高色散光柵結構的新型雙模干涉分波多工器(WDM)結構,並利用有限差分時域法(FDTD)進行模擬分析。模擬結果顯示,我們所設計的光柵輔助波導管頻譜和波長相依,且將被用來調整1342nm 和1560nm兩波長的拍擊長度(Beat Length),使得這兩波長在48μm距離內即可被分開。結果分析至知兩波長在此結構的功率強度對比皆可達12dB,而嵌入損耗只有約1dB。

      A novel design of wavelength division multiplexer (WDM) based on two-mode interference (TMI) assisted by a highly dispersive grating structure is two-dimensionally simulated and analyzed using finite difference time domain (FDTD) method. We show that the designed grating waveguide provides a mode-dependent reflection spectrum which is used to modify the beat lengths of the two selected wavelengths 1342 nm and 1560 nm, so that they can be divided in a very short distance about 58 m. Simulation results show that contrasts about 10 dB and insertion losses less than 1 dB can be achieved for both wavelengths.

    摘要 ………………………………………………………………… I 圖目錄…………………………………………………………… VII 第一章 緒論 1-1 研究動機 ………………………………………………… 1 1-2 研究方法 ………………………………………………… 3 第二章 原理 2-1 簡介 ……………………………………………………… 5 2-2多模干涉 ………………………………………………… 8 2-3 多模干涉(MMI, Multimode Interference)理論推導 …… 11 2-3-1 傳播常數(β) ………………………………… 11 2-3-2 導引模態(guided-mode)傳播分析 …………… 13 2-4 高色散性的光柵結構 ………………………………… 16 2-4-1 布洛赫理論(Bloch Theory) …………………… 16 2-4-2 能量速度(energy velocity)、群速度(group velocity)…………………………………… 23 第三章 二維光柵結構輔助的雙模干涉分波多工器(TMI- WDM)元件設計 …… 27 第四章 模擬結果分析 4-1 最佳功率強度對比位置(Contrast)與嵌入損耗(Insertion Loss) …………………………………………………… 32 4-2 單模S-Bend 輸出波導管……………………………… 37 第五章 討論與結論 5-1 模擬結果討論 ………………………………………… 41 5-2 未來展望 ……………………………………………… 44 5-3 結論 …………………………………………………… 46 參考文獻 Appendix A …………………………………………………… i Appendix B…………………………………………………… iii Appendix C…………………………………………………… v

    [1] M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385-386, 1988.

    [2] H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution, “ Electron. Lett., Vol. 26, pp. 87-88,1990.

    [3] M. Zirngibl, C. H. Joyner, L. W. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 88 waveguide grating multiplexer on InP,” Electron. Lett. vol. 29, pp. 201-202, 1993.

    [4] S. Suzuki, S. Sekine, K. Shuto, Y. Ueoka, and I. Nishi, “Small-size optical multi/demultiplexer using high  composite glass waveguide,” presented at IOOC Conf., paper 19D1-5, Osaka, Japan, July 1989.

    [5] A. Mahapatra and J. M. Connors, “ High finesse ring resonators-fabrication and analysis,” SPIE, vol. 651, Integrated Opt. Circuit Eng. III, pp. 1080-1082,1989.

    [6] T. Kitagawa, K. Hattori, Y. Hibino, T. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. ECOC 1992, pp. 907-910.

    [7] W. Wang, S. Honkanen, S. Najafi, and A. Tervonen, “New integrated optical ring resonator in glass,” Electron. Lett., vol. 28, pp. 1967-1968, 1992.

    [8] T. Negami, H. Haga and S. Yamamoto, “Guided-wave optical wave length demultiplexer using and asymmetric Y junction,”Appl. Phys. Lett., vol. 54, pp.1080-1082, 1989.
    [9] L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging:Principles and Applications”,Journal of Lightwave Technology, VOL. 13, NO. 4, pp.615~627, April 1995

    [10] P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742 (1979)

    [11] A. Yariv, P. Yeh “Optical Waves in Crystals”, 1984 .

    下載圖示 校內:2005-08-26公開
    校外:2005-08-26公開
    QR CODE