| 研究生: |
高騏勲 Gau, Chi-Shiun |
|---|---|
| 論文名稱: |
具光柵結構之新型雙模干涉分波多工器 A Novel Wavelength Division Multiplexer Using Grating-Assisted Two-Mode Interference |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 雙模干涉 、光柵 、光子能隙 、有限差分時域法 |
| 外文關鍵詞: | WDM, finite difference time domain, optical grating, two-mode interference, photonic band gap |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,將首次提出一種具高色散光柵結構的新型雙模干涉分波多工器(WDM)結構,並利用有限差分時域法(FDTD)進行模擬分析。模擬結果顯示,我們所設計的光柵輔助波導管頻譜和波長相依,且將被用來調整1342nm 和1560nm兩波長的拍擊長度(Beat Length),使得這兩波長在48μm距離內即可被分開。結果分析至知兩波長在此結構的功率強度對比皆可達12dB,而嵌入損耗只有約1dB。
A novel design of wavelength division multiplexer (WDM) based on two-mode interference (TMI) assisted by a highly dispersive grating structure is two-dimensionally simulated and analyzed using finite difference time domain (FDTD) method. We show that the designed grating waveguide provides a mode-dependent reflection spectrum which is used to modify the beat lengths of the two selected wavelengths 1342 nm and 1560 nm, so that they can be divided in a very short distance about 58 m. Simulation results show that contrasts about 10 dB and insertion losses less than 1 dB can be achieved for both wavelengths.
[1] M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385-386, 1988.
[2] H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution, “ Electron. Lett., Vol. 26, pp. 87-88,1990.
[3] M. Zirngibl, C. H. Joyner, L. W. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 88 waveguide grating multiplexer on InP,” Electron. Lett. vol. 29, pp. 201-202, 1993.
[4] S. Suzuki, S. Sekine, K. Shuto, Y. Ueoka, and I. Nishi, “Small-size optical multi/demultiplexer using high composite glass waveguide,” presented at IOOC Conf., paper 19D1-5, Osaka, Japan, July 1989.
[5] A. Mahapatra and J. M. Connors, “ High finesse ring resonators-fabrication and analysis,” SPIE, vol. 651, Integrated Opt. Circuit Eng. III, pp. 1080-1082,1989.
[6] T. Kitagawa, K. Hattori, Y. Hibino, T. Ohmori, and M. Horiguchi, “Laser oscillation in Er-doped silica-based planar ring resonator,” Proc. ECOC 1992, pp. 907-910.
[7] W. Wang, S. Honkanen, S. Najafi, and A. Tervonen, “New integrated optical ring resonator in glass,” Electron. Lett., vol. 28, pp. 1967-1968, 1992.
[8] T. Negami, H. Haga and S. Yamamoto, “Guided-wave optical wave length demultiplexer using and asymmetric Y junction,”Appl. Phys. Lett., vol. 54, pp.1080-1082, 1989.
[9] L. B. Soldano and E. C. M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging:Principles and Applications”,Journal of Lightwave Technology, VOL. 13, NO. 4, pp.615~627, April 1995
[10] P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742 (1979)
[11] A. Yariv, P. Yeh “Optical Waves in Crystals”, 1984 .