簡易檢索 / 詳目顯示

研究生: 梁育瑞
Liang, Yu-Jui
論文名稱: 利用梯度折射率聲子晶體設計聲學黑洞
An acoustic black hole using graded index phononic crystal
指導教授: 王清正
Wang, Ching-Cheng
共同指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 聲子晶體聲學黑洞梯度材料
外文關鍵詞: phononic crystal, acoustic black hole, graded index medium
相關次數: 點閱:138下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲子晶體是由兩種或兩種以上不同的彈性材料或流體進行週期性排列所形成的結構。此聲子晶體結構存在聲子能隙現象,在任何角度或頻率入射下,可隔絕聲波或彈性波在聲子晶體上的傳遞,許多應用元件因此被設計出,如濾波器或隔音裝置。而破壞完美聲子晶體的週期性結構,會在能隙裡面產生缺陷模態,利用此缺陷模態可用來做為波導或共振腔的設計。接著進一步研究發現在其傳導區擁有異常之頻散現象,發現聲子晶體具有負折射特性。而近年來聲學梯度材料在操縱聲波或彈性波這方面扮演了很重要的角色,但聲學梯度材料有非均質的特性且實際上不容易實現,所以可利用聲子晶體來等效聲學梯度材料。在不同的頻率入射到不同填充率或不同材料的聲子晶體下所得到的折射率會不同,藉由此原理設計梯度折射率聲子晶體去操縱聲波的行進方向,進而設計許多聲波元件,如透鏡、波導、吸收器等等,使得該方面的研究更成為最近學術界的熱門話題。
    本文以平面波展開法求得二維聲子晶體的色散曲線,並利用色散曲線求得分別在不同的無因次化頻率及不同填充率下的聲子晶體折射率,進而利用梯度聲子晶體來設計聲學黑洞,再利用有限元素軟體模擬其聲波折射情形。此黑洞結構分為內層和外層兩部分,當一平面聲波入射進外層結構時,會被折射進入內層結構並且加以吸收。並且討論其適當的工作頻寬。此結構可達到噪音控制、聲波吸收的效果,並更加擴展了聲子晶體在工程上的應用面。

    Phononic crystals (sonic crystals) are periodic elastic composite materials. Phononic crystals can typically exhibit complete band gaps in which acoustic/elastic waves are forbidden in any direction. Many applied devices have been designed by using band gap effects, such as elastic/acoustic filters and noise/vibration isolations. By creating crystal defects in a perfect phononic crystal, the elastic/acoustic waves can be confined in localized modes. There exist the defect modes in the absoulate band gap. During the past years, there has a great deal of attention in dispersion characteristics. Negative refraction behavior has been investigated in phononic crystals. Recently, a graded index medium plays an important role in controlling elastic/acoustic wave propagation, but this will lead to difficult in the practical implementation. A possible solution needs to rely on the phononic crystals to replace the graded index medium. The effective refractive index of a phononic crystal can be tuned by carefully adjusting the filling fraction, the lattice constant, or choosing appropriate material parameter. The characteristic has been employed to develop many applications for acoustic devices, such as lenses, waveguides, and absorbers.
    The plane wave expansion method are used to obtained the dispersion relations and the effective refractive index of the phononic crystal. An acoustic black hole is designed by using graded index phononic crystals. An acoustic black hole consists of the outer shell and the inner core. The finite element method (FEM) is employed to simulate the acoustic wave propagation in the acoustic black hole. Numerical simulations show that the acoustic waves can be bent toward the central area in the outer shell and absorbed by the inner core. Thus, the operating frequency is broadband. Such a mechanism of an omnidirectional acoustic absorber could have more potential to design various applications, such as sound absorption and noise control.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3-1 聲子晶體能隙現象 2 1-3-2 梯度聲子晶體/光子晶體 3 1-4 本文架構 5 第二章 數值方法 7 2-1 前言 7 2-2 固態物理學基本定義 7 2-2-1 倒晶格空間 8 2-2-2 布里淵區 9 2-2-3 布拉克定理 10 2-3 平面波展開法 11 2-3-1 正方晶格排列 14 2-3-2 三角晶格排列 15 2-4 有限元素法 15 第三章 利用梯度折射率聲子晶體設計聲學黑洞 25 3-1 前言 25 3-2 理想聲學黑洞 25 3-2-1 結構參數設計 25 3-2-2 壓力場模擬 28 3-3 以層狀堆疊方式組成聲學黑洞 29 3-3-1 結構參數設計 29 3-3-2 壓力場模擬 30 3-4 利用梯度折射率聲子晶體設計聲學黑洞 31 3-4-1 聲子晶體折射率 31 3-4-2 結構參數設計 34 3-4-3 壓力場模擬 35 第四章 綜合結論與未來展望 58 4-1 綜合結論 58 4-2 未來展望 59 參考文獻 60 自述 65

    [1]R.-Q. Li, X.-F. Zhu, B. Liang, Y. Li, X.-Y. Zou, and J.-C. Cheng, ‘A broadband acoustic omnidirectional absorber comprising positive-index materials’, Appl. Phys. Lett. 99, 193507 (2011)
    [2]E. Yablonovitch, “Inhibited spontaneous emission in slid-state physics and electronics”, Phys. Rew. Lett. Vol. 58, No. 20, pp. 2059 (1987)
    [3]S. John, “Strong localization of photons in certain disordered dielectric superlattice”, Phys. Rew. Lett. Vol. 58, No. 23, pp. 2486 (1987)
    [4]L. Brillouin, “Wave propagation in periodic structure”, 2nded. Dover, New York (1953)
    [5]R. Esquivel-Sirvent and G. H. Cocoletzi, “Band structure for the propagation of elastic waves in superlattice”, J. Acoust. Soc. Am. Vol. 95, No. 1, pp. 86-90 (1994)
    [6]M. Ruzzene and A. Baz, ‘Attenuation and localization of wave propagation in periodic rods using shape memory inserts’, Smart Materials and Structures Vol. 9, No. 6 , 805 (2000).
    [7]M. Ruzzene and A. Baz, ‘Control of wave propagation in periodic composite rods using shape memory inserts’, Journal of Vibration and Acoustics Vol. 122, No. 2, 151 (2000).
    [8]B. Manzanares-Martinez, J. Sanchez-Dehesa, A. Hakansson, F. Cervera and F. Ramos-Mendieta, “Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems”, Appl. Phys. Lett. Vol. 85, No. 1, pp. 154-156 (2004)
    [9]M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B.Djafari-Rouhani, ‘Acoustic band structure of periodic elastic composites’, Phys. Rev. Lett. Vol. 71, No. 13, 2022 (1993)
    [10]M. S. Kushwaha, P. Halevi, ‘Band-gap engineering in periodic elastic composites’, Appl. Phys. Lett. Vol. 64, No.9, 1805 (1994)
    [11]M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B.Djafari-Rouhani, ‘Theory of acoustic band structure of periodic elastic composites’, Phys. Rev. B. Vol. 49, No. 4, 2313 (1994)
    [12]M. S. Kushwaha, ‘Classical band structure of periodic elastic composites’, Internationa1 Journal of Modern Physics B Vol. 10, No. 9, 977 (1996)
    [13]M. S. Kushwaha, P. Halevi, ‘Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders’, Appl. Phys. Lett. Vol.69, No. 1, 31 (1996)
    [14]M. S. Kushwaha, ‘Stop-bands for periodic metallic rods: Sculptures that can filter the noise’, Appl. Phys. Lett. Vol. 70, No. 24, 3218 (1997)
    [15]M. S. Kushwaha, and B. Djafrari-Rouhani, ‘Giant sonic stop band in two-dimensional periodic system of fluids’, Journal of Applied Physics Vol. 84, No. 9, 4677 (1998)
    [16]F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Acoustic band gaps in two-dimensional rectangular arrays of liquid cylinders”, Solid State Commun. Vol. 123, No. 5, pp. 239-242 (2002)
    [17]C. Goffaux and J. P. Vigneron, ‘Theoretical study of a tunable phononic band gap system’, Phys. Rev. B, Vol. 64, No. 7, 075118 (2001)
    [18]X. Li, F. Wu, H. Hu, S. Zhong and Y. Liu, “Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites”, J. Phys. D: Appl. Phys. Vol. 36, No. 1, pp. L15-L17 (2003)
    [19]W. Kuang, Z. Hou, and Y. Liu, ‘The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals’, Phys. Let. A Vol. 332, No. 6, 481 (2004)
    [20]Z. Hou, F. Wu, and Y. Liu, ‘Phononic crystals containing piezoelectric material’, Solid State Communications Vol. 130 , 745 (2004)
    [21]J. Y. Yeh, “Control analysis of the tunable phononic crystal with electrorheological material”, Physical B Vol. 400, No. 1-2, pp. 137-144 (2007)
    [22]X. Zhang, Y. Liu, F. Wu, and Z. Liu, ‘Large two-dimensional band gaps in three-component phononic crystals’, Phys. Let. A Vol. 317, No. 2 144 (2003)
    [23]W. Kuang, Z. Hou, Y. Liu and H. Li, “The band gaps of cubic phononic crystals with different shapes of scatters”, J. Phys. D: Appl. Phys. Vol. 39, No. 6, pp. 2067-2071 (2006)
    [24]M. Kafesaki, M. M. Sigalas and E. N. Economou, “Elastic wave band gaps in 3-D periodic polymer matrix composites”, Solid State Commun. Vol. 96, No. 5, pp. 285-289 (1995)
    [25]E. Centeno, D. Cassagne, and J. P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006)
    [26]H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240-1253 (2007)
    [27]B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321-20333 (2010)
    [28]W. Lu, J. F. Jin, Z. Lin, and H. Chen, “A simple design of an artificial electromagnetic black hole”, J. Appl. Phys. 108, 064517 (2010)
    [29]H. W. Wang and L. W. Chen, “A cylindrical optical black hole using graded index photonic crystals,” J. Appl. Phys. 109, 103104 (2011)
    [30]Z. He, F. Cai and Z. Liu, “Guiding acoustic waves with graded phononic crystals”, Solid State Commun. Vol. 148, pp. 74-77 (2008)
    [31]S.-C. S. Lin, T. J. Huang, J.-H. Sun and T.-T. Wu,“Gradient-index phononic crystals”, Phys. Rev. B. Vol. 79, 094302 (2009)
    [32]S.-C. S. Lin, B. R Tittmann, J.-H. Sun, T.-T. Wu and T. J. Huang, “Acoustic beamwidth compressor using gradient-index phononic crystals”, J. Phys. D: Appl. Phys. Vol. 42, 185502 (2009)
    [33]S.-C. S. Lin and T. J. Huang, “Acoustic mirage in two-dimensional gradient-index phononic crystals”, J. Appl. Phys. Vol. 106, 053529 (2009)
    [34]T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C. S. Lin and T. J. Huang, “Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate”, Appl. Phys. Lett. Vol. 98, 171911 (2011)
    [35]T. P. Martin, M. Nicholas, G. J. Orris, L.-W. Cai, D. Torrent and J. Sanchez-Dehesa, “Sonic gradient index lens for aqueous applications”, Appl. Phys. Lett. Vol. 97, 113503 (2010)
    [36]L. Zigoneanu, B.-I. Popa and S. A. Cummer, “Design and measurements of a broadband two-dimensional acoustic lens”, Phys. Rev. B Vol. 84, 024305 (2011)
    [37]L.-Y. Wu and L.-W. Chen, “An acoustic bending waveguide designed by graded sonic crystals”, J. Appl. Phys. Vol. 110, 114507 (2011)
    [38]M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett. Vol. 71, No. 13, pp.2022 (1993)
    [39]M. S. Kushwaha, “Classical band structure of periodic elastic composites”, Int. J. Mod. Phys. B Vol. 10, No. 9, pp.977 (1996)
    [40]M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites”, Appl. Phys. Lett. Vol. 64, No. 9, pp.1085 (1994)
    [41]M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Phys. Rev. B Vol. 49, No. 4, pp.2313 (1994)
    [42]M. S. Kushwaha and P. Halevi, “Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders”, Appl. Phys. Lett. Vol. 69, No. 1, pp.31 (1996)
    [43]M. S. Kushwaha, “Stop-bands for periodic metallic rods: Sculptures that canfilter the noice”, Appl. Phys. Lett. Vol. 70, No. 24, pp.3218 (1997)
    [44]M. S. Kushwaha and B. Djafari-Rouhani, “Giant sonic band in two-dimensional periodic system of fluids”, J. Appl. Phys. Vol. 84, No. 9, pp.4677 (1998)
    [45]COMSOL 3.5a The COMSOL Group, Stockholm, Sweden (2009)
    [46]J. N. Reddy, An introduction to the finite element method 3rded. McGraw-Hill, New York (2006)

    下載圖示 校內:2017-07-31公開
    校外:2017-07-31公開
    QR CODE