| 研究生: |
劉力誌 Liu, Li-Chih |
|---|---|
| 論文名稱: |
溶液法製備氧化鋅錫薄膜電晶體之電特性與穩定性研究 Transistors characteristic and electrical stability of zinc tin oxide thin film transistors by solution process |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 鋅錫氧化物 、薄膜電晶體 、溶液法 、穩定性(偏壓/照光/環境測試) 、主動層厚度 |
| 外文關鍵詞: | zinc tin oxide, thin film transistors, solution process, stability (bias/illumination/environment test), active layer thickness |
| 相關次數: | 點閱:108 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文主要利用溶液法製備氧化鋅錫薄膜電晶體(Zinc Tin Oxide thin film transistors, ZTO TFTs)。首先,二元金屬氧化物(M1M2O)半導體,M1,M2金屬元素例如:銦、鎵、錫、鋅、鍺等,電子組態滿足(n−1)d^10ns^0(n≥4)由具對稱性S球型軌域組成,即使在非晶無序的排列下,彼此鄰近S軌域仍重疊,提供有效電子傳輸路徑。而這些氧化物選擇上,Zinc Tin Oxide可規避選用鎵和銦等貴金屬,具價格競爭且無毒性等,具相當潛力於未來應用。接續,本研究利用旋轉塗佈法/溶液法,為可連續鍍製薄膜製程,提供簡單、低成本、高生產無需使用真空設備等優勢。基此,使本研究之目的更具實質學術價值。與此同時,本文將分為三個主要研究方向。
本研究第一部分(第3章節),以醋酸鋅(Zinc acetate)和氯化亞錫(Tin chloride)為溶質,乙二醇甲醚(Ethylene glycol monomethyl ether)為溶劑,配製半導體ZTO薄膜之前驅溶液。藉由調變ZTO前驅溶液原子組成比例(即,錫/(鋅+錫)),作為一開始的研究基礎,調查研究ZTO於不同原子比例組成之材料特性。接續,以旋轉塗佈方式鍍製不同鋅錫比例之超薄ZTO主動層(厚度約7nm),最後製備完成下閘極-上接觸結構之薄膜電晶體元件。根據材料分析結果,隨著添加錫含量提高,於ZTO薄膜中之氧缺陷大幅下降。研究中於未摻雜錫之氧化鋅電晶體元件無法有薄膜電晶體運轉特性,隨錫含量逐漸由小量至大量摻雜並伴隨降低氧空缺後,亦造成ZTO為主動層之電晶體特性順利運轉。此研究機制主要利用錫具高離子電位特性,藉由錫摻雜量來控制ZTO薄膜中之氧空缺含量。於ZTO薄膜電晶體在鋅錫原子比例Sn/(Zn+Sn)=0.5具有最佳場效載子遷移率2.0cm^2/Vs和極大電流開關比(on/off ratio)~10^8。ZTO材料特性和電晶體電性能之間關連性,在不同錫/(鋅+錫)比例,於此章節詳細探討。
本研究第二部分(第4章節),此章節將ZTO溶液之前驅物溶質做一調整,使用揮發性金屬硝酸鹽類,將原醋酸鋅以硝酸鋅做為替換,ZTO薄膜退火溫度可於較低溫350oC完成。然而,此章節ZTO薄膜退火溫度仍維持500oC。下一章節(第5章),將以退火溫度為350oC之ZTO薄膜電晶體元件做一系列穩定性研究探討。於此章節中,所有元件皆未鍍製鈍化層(Passivation layer)之ZTO薄膜電晶體建構於溶液法,並調查不同厚度之ZTO為主動層之薄膜電晶體於各種環境穩定性表現。首先,超薄ZTO主動層之薄膜厚度只有5奈米,此薄膜電晶體元件性能表現高場效載子遷移率約13~14cm^2/Vs,低次臨界電壓表現約~0.30V/decade,電流開關比約10^8。隨之ZTO薄膜厚度調整增加至12奈米和22奈米,其場效載子遷移率分別更可高達約22cm^2/Vs和29cm^2/Vs。與此同時,這些不同厚度且未鍍製鈍化層之ZTO主動層薄膜電晶體元件於各環境中穩定性之實驗結果;發現,超薄ZTO主動層薄膜厚度為5奈米之ZTO薄膜電晶體元件,不管操作於空氣(相對濕度約60%)、真空(3.3×10^-5 torr)或是乾氧(760 torr)之下,ZTO(5nm-ZTO)薄膜電晶體元件性能幾乎不受影響。於此不同ZTO薄膜厚度之相異電晶體運轉特性,調查其不同氧空缺含量和費米能階至導電帶之變化,來解釋超薄ZTO電晶體元件(5nm-ZTO)可達到抗潮濕且無須鈍化處理,於第4章節詳細探討。
本研究第三部分(第5章節),有鑒於薄膜電晶體元件於實際應用上,元件反覆開關,即操作於正負偏壓反覆施加,且同時受到背光源影響。因此本章節研究調查於施加偏壓與照光對薄膜電晶體元件特性之影響。於此章節,溶液法製備之ZTO薄膜退火溫度只有350oC,其電晶體元件特性表現:場效載子遷移率約8cm^2/Vs,電流開關比~10^8。接續,利用雷射照光(波長為405和532nm),亦或搭配施加偏壓(分別施加偏壓為0或-20或+20伏特)探討電晶體元件穩定性。研究調查發現臨界電壓偏移之窗口,ΔVth(Vthstress 3400s - stress 0s)在正偏壓(positive bias stress)施加下有一明顯之正偏移(ΔVth= 9.98V),正偏壓加照光(positive bias illumination stress)為ΔVth= 6.96V,但在只有照光下(illumination stress, 405nm, ΔVth= -2.02V),或者是負偏壓(negative bias stress, ΔVth= -2.27V),顯示只有些微負偏移。然而,在負偏壓加照光(negative bias illumination stress)條件下卻有一非常明顯的負偏移,而其臨界電壓窗口可藉由施加PBS得以有效回復。此結果主要貢獻為當照光可將ZTO薄膜中氧空缺離子化為一價或二價(i.e., Vo, Vo+ and Vo++)。詳細的機制探討有助於了解溶液法ZTO薄膜電晶體之穩定性,於第5章節詳細探討。
In this dissertation, we fabricate solution-processed Zinc Tin Oxide thin film transistors (ZTO TFTs). First, the mixed metal oxides semiconductors (M1M2O) which have heavy metal cations (M1 and M2) are primarily composed of spatially spread metal (n − 1)d10ns0 (n ≥ 4) orbital with isotropic shape, the magnitude of this overlap among the adjacent metal ns orbital of spherical symmetry resulted in efficient path of electron transport even if distorted amorphous structure. In addition, among them, ZTO TFT that is indium- and gallium- free has gained an advantage because of the low-cost competition and non-toxic. Second, this work suggested spin-coating/solution-processing method allow for a continuous process, which is advantageous for achieving simple, low-cost and high-throughput production without the need for costly high-vacuum equipments. Hence, this thesis provided more substantial academic value. Furthermore, this thesis is divided into three aspects for research.
In the first of aspect, zinc acetate, tin chloride (solute) and ethylene glycol monomethyl ether (solvent) were used as precursors for preparing ZTO semiconductor films. We examine the fundamental studies of ZTO precursor composition (Sn/(Zn+Sn) ratio) effects at the beginning in order to figure out the role of each component in ZTO oxide semiconductors with their material characteristic. Next, ultra-thin zinc-tin oxide (ZTO) films (~7 nm thick) with different Sn/(Sn+Zn) molar ratios, fabricated by using a solution process in combination of spin coating method, are applied as channel layers in thin film transistors (TFTs) with a bottom-gate top-contact structure. With regard to material characteristics, oxygen deficiency in ZTO films can be substantially decreased with the addition of different Sn contents. The non-Sn added ZnO TFT cannot be turned on whereas the Sn added ZTO channel layers perform TFT characteristics adequately, indicating the necessity of reducing oxygen deficiency by introducing Sn during the solution synthesizing process. In the mechanism, we can control the oxygen deficiency of the ZTO TFTs using various molar ratios of Sn because of a high ionic potential. With a Sn/(Sn+Zn) molar ratio of 0.5, the ZTO TFT exhibits the best field-effect mobility of ~ 2.0 cm^2/Vs and a large on/off current ratio of ~10^8. The electrical characteristics of ZTO TFTs are explored and correlated to the levels of oxygen deficiency associated with various Sn contents (detailed in Chapter 3).
In second aspect, solution-processed ZTO films are fabricated using a volatile metal nitrate precursor species with a low annealing at 350 oC. However, this section of ZTO films at annealing temperature remained 500 oC. Next chapter of 5, ZTO TFTs will do a series of stability study at annealing temperature of 350 oC. In this chapter, an ultra-thin (5 nm-thick), unpassivated zinc tin oxide (ZTO) thin-film transistor TFT, fabricated with solution process, exhibits a good field-effect mobility (13~14 cm^2/Vs), small subthreshold swing (~0.30 V/dec.) and high on/off current ratio (~10^8). The field-effect mobility can be further enhanced by increasing the ZTO thickness to 12 nm (~22 cm^2/Vs) and 22 nm (~29 cm^2/Vs). Furthermore, ID-VG characteristics of the 5nm-thick ZTO TFT remain unaffected, regardless of working in air (60% relative humidity), vacuum (3.3×10^-5 torr) or dry O2 (760 torr) atmosphere. The dissimilar TFT characteristics are discussed in terms of oxygen deficiency content, as well as the Fermi level position (EF to EC) for ZTO of various thicknesses to explain the moisture immunity of the 5 nm-thick solution-processed ZTO TFT (detailed in Chapter 4).
In the third of aspect, in practical application, switching TFTs are continuously exposed to bias and/or illumination from the backlight. In this section, the interactions between these (such as simultaneous illumination/bias stressing) will also be discussed. Solution-processed ultra-thin (3 nm) zinc tin oxide (ZTO) thin film transistors (TFTs) with a mobility of 8 cm^2/Vs are obtained with post spin-coating annealing at only 350 oC. The effect of light illumination (at wavelengths of 405 nm or 532 nm) on the stability of TFT transfer characteristics under various gate bias stress conditions (zero, positive, negative) is investigated. It is found that the ΔVth (Vth= stress 3400s - stress 0s) window is significantly positive when ZTO TFTs are under positive bias stress (PBS, ΔVth= 9.98 V) and positive bias illumination stress (PBIS, λ=405 nm, ΔVth= 6.96 V), but ΔVth is slightly negative under only light illumination stress (IS, λ= 405 nm, ΔVth= -2.02 V) or negative bias stress (NBS, ΔVth= -2.27 V). However, the ΔVth of ZTO TFT under negative bias illumination stress is substantial, and it will efficiently recover the ΔVth caused by PBS. The result is attributed to the photo-ionization and subsequent transition of electronic states of oxygen vacancies (i.e., Vo, Vo+ and Vo++) in ZTO. A detailed mechanism is discussed to better understand the bias stress stability of solution processed ZTO TFTs (detailed in Chapter 5).
1.C. R. Kagan and P. Andry, Thin-film transistors, (Marcel Dekker, New York, 2003).
2.T. Kamiya, K. Nomura and H. Hosono,"Present status of amorphous In–Ga–Zn–O thin-film transistors", Sci. Technol. Adv. Mater. 11, 044305 (2010).
3.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature 432, 488 (2004).
4.E. Fortunato, P. Barquinha and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances", Adv. Mater. 24, 2945 (2012).
5.J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, "Review of recent developments in amorphous oxide semiconductor thin-film transistor devices", Thin Solid Films 520, 1679 (2012).
6.Oxide TFT technology status and development status, Diaplaybank Co., Ltd.
7.T. Kawamura, H. Uchiyama, S. Saito, H. Wakana, T. Mine, M. Hatano, K. Torii, and T. Onai, "1.5-V Operating fully-depleted amorphous oxide thin film transistors achieved by 63-mV/dec subthreshold slope", in IEDM Tech. Dig., 77 (2008).
8.L. Y. Su, H. Y. Lin, H. K. Lin, S. L. Wang, L. H. Peng and J. J. Huang, "Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing", IEEE Electron Device Lett. 32, 1245 (2011).
9.D. Kim, S. Yoon, Y. Jeong, Y. Kim, B. Kim and M. Hong, "Role of adsorbed H2O on transfer characteristics of solution-processed zinc tin oxide thin-film transistors", Appl. Phys. Express 5, 021101 (2012).
10.S. Song, W.-K. Hong, S.-S. Kwon and T. Lee, "Passivation effects on ZnO nanowire field effect transistors under oxygen, ambient, and vacuum environments", Appl. Phys. Lett. 92, 263109 (2008).
11.J.-W. Jo, Y.-H. Kim and S. K. Park, "Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors", Appl. Phys. Lett. 105, 043503 (2014).
12.T. Tsukada, TFT/LCD : liquid-crysatl display addressed by thin-film transistors, (Cordon and Breach, Australia, 1996).
13.R. L. Hoffman, "ZnO-channel thin-film transistors: Channel mobility", J. Appl. Phys. 95, 5813 (2004).
14.S. R. Thomas, P. Pattanasattayavong and T. D. Anthopoulos, "Solution-processable metal oxide semiconductors for thin-film transistor applications", Chem. Soc. Rev. 42, 6910 (2013).
15.D. K. Schroder, Semiconductor Material and Device Characterization, (John Wiley & Sons, Inc ., New Jersey 2006).
16.A. C. Tickle, Thin-Film Transistors - A new approach to microelectronics, (Wiley, New York 1969).
17.W. J. Park, H. S. Shin, B. Du Ahn, G. H. Kim, S. M. Lee, K. H. Kim, H. J. Kim, "Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor", Appl. Phys. Lett. 93, 083508 (2008).
18.H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application" J. Non-Cryst. Solids 352, 851 (2006).
19.T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors", NPG Asia Materials 2, 15 (2010).
20.H. Hosono, M. Yasukawa and H. Kawazoe, "Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides", J. Non-Cryst. Solids 334, 203 (1996).
21.H. C. Cheng, P. Y. Yang, J. L. Wang, S. Agarwal, W. C. Tsai, S. J. Wang and I. C. Lee, "Zinc oxide thin-film transistors with location-controlled crystal grains fabricated by low-temperature hydrothermal method" IEEE Electron Device Lett. 32, 497 (2011).
22.H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, "Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits" Appl. Phys. Lett. 97, 072111 (2010).
23.C. Ke, W. Zhu, J. S. Pan and Z. Yang, "Annealing temperature dependent oxygen vacancy behavior in SnO2 thin films fabricated by pulsed laser deposition", Current Applied Physics 11, S306 (2011).
24.H. Faber, Y. H. Lin, S. R. Thomas, K. Zhao, N. Pliatsikas, M. A. McLachlan, A. Amassian, P. A. Patsalas and T. D. Anthopoulos, "Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis", ACS Appl. Mater. Interfaces 7, 782 (2015).
25.Y. Ogo, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, "Amorphous Sn-Ga-Zn-O channel thin-film transistors", phys. stat. sol. (a) 205, 1920 (2008).
26.J. Jia, Y. Torigoshi, E. Kawashima, F. Utsuno, K. Yano and Y. Shigesato, "Amorphous indium-tin-zinc oxide films deposited by magnetron sputtering with various reactive gases: Spatial distribution of thin film transistor performance", Appl. Phys. Lett. 106, 023502 (2015).
27.C.-T. Lee, Y.-H. Lin and J.-H. Lin, "High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors", J. Appl. Phys. 117, 045309 (2015).
28.J. Heo, S. Bok Kim and R. G. Gordon, "Atomic layer deposited zinc tin oxide channel for amorphous oxide thin film transistors", Appl. Phys. Lett. 101, 113507 (2012).
29.S. J. Kim, S. Yoon and H. J. Kim, "Review of solution-processed oxide thin-film transistors", Jpn. J. Appl. Phys. 53, 02BA02 (2014).
30.M. G. Kim, M. G. Kanatzidis, A. Facchetti and T. J. Marks, "Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing", Nature Materials 10, 382 (2011).
31.T. Jun, K. Song, Y. Jeong, K. Woo, D. Kim, C. Bae and J. Moon, "High performance low temperature solution processable ZnO thin film transistors by microwave assisted annealing", J. Mater. Chem. 21, 1102 (2011).
32.W. H. Jeong, J. H. Bae and H. J. Kim, "High-performance oxide thin-film transistors using a volatile nitrate precursor for low-temperature solution process", IEEE Electron Device Lett. 33, 68 (2012).
33.Y. H. Kim, J. S. Heo, T. H. Kim, S. Park, M. H. Yoon, J. Kim, M. S. Oh, G. R. Yi, Y. Y. Noh and S. K. Park, "Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films", Nature 128, 489 (2012).
34.K. Song, C. Young Koo, T. Jun, D. Lee, Y. Jeong and J. Moon, "Low-temperature soluble InZnO thin film transistors by microwave annealing", J. Cryst. Growth 326, 23 (2011).
35.W. Xu, H. Wang, F. Xie, J. Chen, H. Cao and J. B. Xu, "Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance", ACS Appl. Mater. Interfaces 7, 5803 (2015).
36.J. Socratous, K. K. Banger, Y. Vaynzof, A. Sadhanala, A. D. Brown, A. Sepe, U. Steiner and H. Sirringhaus, "Electronic structure of low-temperature solution-processed amorphous metal oxide semiconductors for thin-film transistor applications", Adv. Funct. Mater. 25, 1873 (2015).
37.Q. Jiang, L. Feng, C. Wu, R. Sun, X. Li, B. Lu, Z. Ye and J. Lu, "Amorphous ZnAlSnO thin-film transistors by a combustion solution process for future displays", Appl. Phys. Lett. 106, 053503 (2015).
38.M. Esro, G. Vourlias, C. Somerton, W. I. Milne and G. Adamopoulos, "High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics", Adv. Funct. Mater. 25, 134 (2015).
39.C. Avis, H. R. Hwang and J. Jang, "Effect of channel layer thickness on the performance of indium-zinc-tin oxide thin film transistors manufactured by inkjet printing", ACS Appl. Mater. Interfaces 6, 10941 (2014).
40.J.-Y. Yoon, Y. H. Kim, J.-W. Ka, S.-K. Hong, M. H. Yi and K.-S. Jang, "A high-temperature resistant polyimide gate insulator surface-modified with a YOx interlayer for high-performance, solution-processed Li-doped ZnO thin-film transistors", J. Mater. Chem. C, 2, 2191 (2014).
41.Y. S. Rim, H. Chen, X. Kou, H. S. Duan, H. Zhou, M. Cai, H. J. Kim and Y. Yang, "Boost up mobility of solution-processed metal oxide thin-film transistors via confining structure on electron pathways", Adv. Mater. 26, 4273 (2014).
42.Y. J. Kim, S. Oh, B. S. Yang, S. J. Han, H. W. Lee, H. J. Kim, J. K. Jeong and C. S. Hwang, "Impact of the cation composition on the electrical performance of solution-processed zinc tin oxide thin-film transistors", ACS Appl. Mater. Interfaces, 6, 14026 (2014).
43.G. Huang, L. Duan, Y. Zhao, G. Dong, D. Zhang and Y. Qiu, "Enhanced mobility of solution-processed polycrystalline zinc tin oxide thin-film transistors via direct incorporation of water into precursor solution", Appl. Phys. Lett. 105, 122105 (2014).
44.T. Y. Hsieh, T. C. Chang, T. C. Chen and M. Y. Tsai, "Review of present reliability challenges in amorphous In-Ga-Zn-O thin film transistors", ECS Journal of Solid State Science and Technology, 3, Q3058 (2014).
45.M. G. Yun, S. H. Kim, C. H. Ahn, S. W. Cho and H. K. Cho, "Effects of channel thickness on electrical properties and stability of zinc tin oxide thin-film transistors", J. Phys. D: Appl. Phys. 46, 475106 (2013).
46.S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon and D. H. Kim, "Effect of channel thickness on density of states in amorphous InGaZnO thin film transisto", Appl. Phys. Lett. 98, 122105 (2011).
47.M.-J. Lee, S. J. Lee, T. I. Lee, W. Lee and J.-M. Myoung, "Device characteristics of amorphous In-Ga-Zn oxide thin-film transistors with varying channel thickness", Semicond. Sci. Technol. 28, 125014 (2013).
48.L. Shao, K. Nomura, T. Kamiya and H. Hosono, "Operation characteristics of thin-film transistors using very thin amorphous In–Ga–Zn–O channels", Electrochem. Solid-State Lett. 14, H197 (2011).
49.J. F. Conley, "Instabilities in amorphous oxide semiconductor thin-film transistors", IEEE Trans. Device Mater. Reliab. 10, 460 (2010).
50.C. S. Chiang, J. Kanicki, and K. Takechi, "Electrical instability of hydrogenated amorphous silicon thin-film transistors for active-matrix liquid-crystal displays", Jpn. J. Appl. Phys. 37, 4704 (1998).
51.F. R. Libsch and J. Kanicki, "Bias-stress-induced stretched‐exponential time dependence of charge injection and trapping in amorphous thin‐film transistors", Appl. Phys. Lett. 62, 1286 (1993).
52.J. G. Um, M. Mativenga and J. Jang, "Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress", Appl. Phys. Lett. 103, 033501 (2013).
53.A. Suresh and J. F. Muth, "Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors", Appl. Phys. Lett. 92, 033502 (2008).
54.K. Nomura, T. Kamiya, H. Yanagi, E. Ikenaga, K. Yang, K. Kobayashi, M. Hirano and H. Hosono, "Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron", Appl. Phys. Lett. 92, 202117 (2008).
55.K.-H. Lee, J. S. Jung, K. S. Son, J. S. Park, T. S. Kim, R. Choi, J. K. Jeong, J.-Y. Kwon, B. Koo and S. Lee, "The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors", Appl. Phys. Lett. 95, 232106 (2009).
56.K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung and J.-H. Lee, "Persistent photoconductivity in Hf–In–Zn–O thin film transistors", Appl. Phys. Lett. 97, 143510 (2010).
57.K. Ghaffarzadeh, A. Nathan, J. Robertson, S. Kim, S. Jeon, C. Kim, U. I. Chung and J.-H. Lee, "Instability in threshold voltage and subthreshold behavior in Hf–In–Zn–O thin film transistors induced by bias-and light-stress", Appl. Phys. Lett. 97, 113504 (2010).
58.Y.-H. Kim, H. S. Kim, J.-I. Han and S. K. Park, "Solvent-mediated threshold voltage shift in solution-processed transparent oxide thin-film transistors", Appl. Phys. Lett. 97, 092105 (2010).
59.J. Zhang, X. Li, J. Lu, N. Zhou, P. Guo, B. Lu, X. Pan, L. Chen and Z. Ye, "Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors", RSC Adv. 4, 3145 (2014).
60.Y. Li, F. Della Valle, M. Simonnet, I. Yamada and J.-J. Delaunay, "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires", Appl. Phys. Lett. 94, 023110 (2009).
61.J. K. Jeong, H. Won Yang, J. H. Jeong, Y.-G. Mo and H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors", Appl. Phys. Lett. 93, 123508 (2008).
62.W. F. Chung, T. C. Chang, C. S. Lin, K. J. Tu, H. W. Li, T. Y. Tseng, Y. C. Chen and Y. H. Tai, "Oxygen-adsorption-induced anomalous capacitance degradation in amorphous indium-gallium-zinc-oxide thin-film-transistors under hot-carrier stress", J. Electrochem. Soc. 159, H286 (2012).
63.W.-F. Chung, T.-C. Chang, H.-W. Li, S.-C. Chen, Y.-C. Chen, T.-Y. Tseng and Y.-H. Tai, "Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors", Appl. Phys. Lett. 98, 152109 (2011).
64.W. J. Maeng, J. S. Park, H.-S. Kim, T. S. Kim, K. S. Son, K.-B. Park, K.-H. Lee, E. S. Kim, Y. N. Ham, M. Ryu, and S. Y. Lee, "Effects of carrier concentration in the back and front channels of Hf-In-Zn-O thin film transistors" J. Electrochem. Soc., 159, H147 (2012).
65.J. Y. Choi, S. S. Kim, and S. Y. Lee, "Effect of hafnium addition on Zn-Sn-O thin film transistors fabricated by solution process", Appl. Phys. Lett. 100, 022109 (2012).
66.D. Luo, L. Lan, M. Xu, H. Xu, M. Li, L. Wang, and J. Peng, "Role of rare earth ions in anodic gate dielectrics for indium-zinc-oxide thin-film transistors", J. Electrochem. Soc. 159, H502 (2012).
67.Y. H. Hwang, S.-J. Seo, J.-H. Jeon, and B.-S. Bae, "Ultraviolet photo-annealing process for low temperature processed sol-gel zinc tin oxide thin film transistors", Electrochem. Solid-State Lett. 15, H91 (2012).
68.H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler,"High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer", Appl. Phys. Lett., 86, 013503 (2005).
69.Y. Jiang, W. Sun, B. Xu, M. Yan, and N. Bahlawane, "Unusual enhancement in electrical conductivity of tin oxide thin films with zinc doping", Phys. Chem. Chem. Phys. 13, 5760 (2011).
70.G. Ma, R. Zou, L. Jiang, Z. Zhang, Y. Xue, L. Yu, G. Song, W. Li, and J. Hu, "Phase-controlled synthesis and gas-sensing properties of zinc stannate (ZnSnO3 and Zn2SnO4) faceted solid and hollow microcrystals", CrystEngComm, 14, 2172 (2012).
71.Y.-C. Chen, T.-C. Chang, H.-W. Li, W.-F. Chung, C.-P. Wu, S.-C. Chen, J. Lu, Y.-H Chen, and Y.-H. Tai, "High-stability oxygen sensor based on amorphous zinc tin oxide thin film transistor", Appl. Phys. Lett. 100, 262908 (2012).
72.S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, "High performance solution-processed amorphous zinc tin oxide thin film transistor", J. Phys. D: Appl. Phys. 42, 035106 (2009).
73.S. Jeong, Y. Jeong, and J. Moon, "Solution-processed zinc tin oxide semiconductor for thin-film transistors", J. Phys. Chem. C, 112, 11082 (2008).
74.Y. H. Kim, J. I. Han, and S. K. Park, "Effect of zinc/tin composition ratio on the operational stability of solution-processed zinc–tin–oxide thin-film transistors", IEEE Electron Dev. Lett. 33, 50 (2012).
75.Y. B. Yoo, J. H. Park, K. M. Song, S. J. Lee, and H. K. Baik, "Non-hydrolytic ester-elimination reaction and its application in solution-processed zinc tin oxide thin film transistors", J. Sol-Gel Sci. Technol. 64, 257 (2012).
76.C. Avis and J. Jang, "Characterization of unpassivated-solution-processed zinc–tin oxide thin film transistors", Jpn. J. Appl. Phys. 50, 01BG03 (2011).
77.S.-J. Seo, Y. H. Hwang, and B.-S. Bae, "Postannealing process for low temperature processed sol–gel zinc tin oxide thin film transistors", Electrochem. Solid-State Lett. 13, H357 (2010).
78.G. Gordillo, L. C. Moreno, W. de la Cruz, and P. Teteran, "Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors", Thin Solid Films, 252, 61 (1994).
79.C. Kittel, Introduction to Solid State Physics, sixth edition (Wiley, New York, 1986).
80.H.-Q. Huang, F.-J. Liu, J. Sun, J.-W. Zhao, Z.-F. Hu, Z.-J. Li, and X.-Q. Zhang, "Influence of the active layer thickness on the electrical properties of ZnO thin film transistors fabricated by radio frequency magnetron sputtering", J. Phys. Chem. Solids, 72, 1393 (2011).
81.J. H. Lee, P. Lin, J. C. Ho, and C. C. Lee, "Chemical solution deposition of Zn1−xZrxO thin films as active channel layers of thin-film transistors", Electrochem. Solid-State Lett., 9, G117 (2006).
82.Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, "Effect of Zr addition on ZnSnO thin-film transistors using a solution process", Appl. Phys. Lett. 97, 233502 (2010).
83.S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO", Superlattices Microstruct. 34, 3 (2003).
84.J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, "Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water", Appl. Phys. Lett. 92, 072104 (2008).
85.Y. Shimizu, M. Shimabukuro, H. Arai, and T. Seiyama, "Humidity‐sensitive characteristics of La3+‐doped and undoped SrSnO3", J. Electrochem. Soc. 136, 1206 (1989).
86.A. Kurz and M. A. Aegerter, "Novel transparent conducting sol–gel oxide coatings", Thin Solid Films, 516, 4513 (2008).
87.H.-R. Kim, D.-H. Kim, E. Byon, G.-H. Lee, G.-H. Lee, and P.-K. Song, "Effects of hydrogen doping on the electrical properties of zinc–tin–oxide thin films", Jpn. J. Appl. Phys., 49, 121101 (2010).
88.K.-H. Lim, K. Kim, S. Kim, S. Y. Park, H. Kim, and Y. S. Kim, "UV–visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors", Adv. Mater. 25, 2994 (2013).
89.H. W. Lee, B. S. Yang, Y. J. Kim, A. Y. Hwang, S. Oh, J. H. Lee, J. K. Jeong, and H. J. Kim, "Comprehensive studies on the carrier transporting property and photo-bias instability of sputtered zinc tin oxide thin film transistors", IEEE Trans. Electron Devices 61, 3191 (2014).
90.J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S.-J. Choi, H.-S. Kim and D. H. Kim, "Effect of direct current sputtering power on the behavior of amorphous indium-gallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation", Appl. Phys. Lett. 106, 123505 (2015).
91.L.-C. Liu, J.-S. Chen and J.-S. Jeng, "Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors", Appl. Phys. Lett. 105, 023509 (2014).
92.Y. Li, Y. L. Pei, R. Q. Hu, Z. M. Chen, Y. Zhao, Z. Shen, B. F. Fan, J. Liang and G. Wang, "Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric", Curr. Appl. Phys. 14, 941 (2014).
93.M. A. Dominguez, F. Flores, A. Luna, J. Martinez, J. A. Luna-Lopez, S. Alcantara, P. Rosales, C. Reyes and A. Orduña, "Impact of active layer thickness in thin-film transistors based on Zinc Oxide by ultrasonic spray pyrolysis", Solid-State Electron. 109, 33 (2015).
94.C. Kim, N.-H. Lee, Y.-K. Kwon and B. Kang,"Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors", Thin Solid Films, 544, 129 (2013).
95.L. C. Liu, J. S. Chen, J. S. Jeng, and W. Y. Chen, "Variation of oxygen deficiency in solution-processed ultra-thin zinc-tin oxide films to their transistor characteristics", ECS J. Solid State Sci. Technol. 2, Q59 (2013).
96.M. D. H. Chowdhury, J. G. Um and J. Jang, "Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 oC", Appl. Phys. Lett. 105, 233504 (2014).
97.R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, "Tin doped indium oxide thin films: Electrical properties", J. Appl. Phys. 83, 2631 (1998).
98.Y. S. Rim, B. D. Ahn, J. S. Park and H. J. Kim, "Manifestation of reversal conductivity on high pressurizing of solution-processed ZnSnO thin-film transistors at low", J. Phys. D: Appl. Phys. 47, 045502 (2014).
99.H. S. Lim, Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, "Carrier-suppressing effect of Mg in solution-processed Zn-Sn-O thin-film transistors", Electrochem. Solid-State Lett. 15, H78 (2012).
100.B. D. Ahn, H. J. Jeon and J. S. Park, "Effects of Ga:N addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing", ACS Appl. Mater. Interfaces 6, 9228 (2014).
101.M. D. H. Chowdhury, M. Mativenga, J. G. Um, R. K. Mruthyunjaya, G. N. Heiler, T. J. Tredwell and J. Jang, "Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous indium-gallium zinc-oxide thin film transistors under high humidity", IEEE Trans. Electron Devices 62, 869 (2015).
102.K.-H. Liu, T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-Y. Hsieh, M.-C. Chen, B.-L. Yeh and W.-C. Chou, "Investigation of on-current degradation behavior induced by surface hydrolysis effect under negative gate bias stress in amorphous InGaZnO thin-film transistors", Appl. Phys. Lett. 104, 103501 (2014).
103.X. L. Xu, L. R. Feng, S. S. He, Y. Z. Jin, and X. J. Guo, "Solution-processed zinc oxide thin-film transistors with a low-temperature polymer passivation layer", IEEE Electron Device Lett. 33, 1420 (2012).
104.S. Yang, D.-H. Cho, M. K. Ryu, S.-H. K. Park, C.-S. Hwang, J. Jang, and J. K. Jeong, "Improvement in the photon-induced bias stability of Al–Sn–Zn–In–O thin film transistors by adopting AlOx passivation layer", Appl. Phys. Lett. 96, 213511 (2010).
105.P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, "Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors", ACS Appl. Mater. Interfaces 5, 3587 (2013).
106.T.-J. Ha and A. Dodabalapur, "Photo stability of solution-processed low-voltage high mobility zinc-tin-oxide/ZrO2 thin-film transistors for transparent display applications", Appl. Phys. Lett. 102, 123506 (2013).
107.J.-S. Lee, S.-M. Song, Y.-H. Kim, J.-Y. Kwon, and M.-K. Han, "Effects of O2 plasma treatment on low temperature solution-processed zinc tin oxide thin film transistors", Phys. Status Solidi A 210, 1745 (2013).
108.Y. B. Yoo, J. H. Park, S. J. Lee, K. M. Song, and H. K. Baik, "Low-temperature, solution-processed zinc tin oxide thin-film transistors fabricated by thermal annealing and microwave irradiation", Jpn. J. Appl. Phys., Part 1 51, 040201 (2012).
109.H. Oh, S.-M. Yoon, M. K. Ryu, C.-S. Hwang, S. Yang, and S.-H. Ko Park, "Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor", Appl. Phys. Lett. 97, 183502 (2010).
110.B. S. Yang, S. Park, S. Oh, Y. J. Kim, J. K. Jeong, C. S. Hwang, and H. J. Kim, "Improvement of the photo-bias stability of the Zn–Sn–O field effect transistors by an ozone treatment", J. Mater. Chem. 22, 10994 (2012).
111.J. Park, X. Zhang, M.-H. Bae, G.-T. Park, and J.-H. Bae, "Fringe field effect on electrical characteristics of pentacene thin-film transistors ", Jpn. J. Appl. Phys., Part 1 52, 111602 (2013).
112.Y. S. Rim, W. Jeong, B. D. Ahn, and H. J. Kim, "Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing", Appl. Phys. Lett. 102, 143503 (2013).
113.M. D. H. Chowdhury, P. Migliorato, and J. Jang, "Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors", Appl. Phys. Lett. 97, 173506 (2010).
114.A. Janotti and C. G. Van de Walle, "Native point defects in ZnO", Phys. Rev. B 76, 165202 (2007).
115.S.-Y. Huang, T.-C. Chang, M.-C. Chen, S.-C. Chen, C.-T. Tsai, M.-C. Hung, C.-H. Tu, C.-H. Chen, J.-J. Chang, and W.-L. Liau, "Effects of ambient atmosphere on electrical characteristics of Al2O3 passivated InGaZnO thin film transistors during positive-bias-temperature-stress operation", Electrochem. Solid-State Lett. 14, H177 (2011).