簡易檢索 / 詳目顯示

研究生: 梅可人
Mei, Ko-Jen
論文名稱: 以創新延伸式八元樹法應用於數控加工模擬系統之碰撞檢測與幾何移除
Novel Extended Octrees Method for Collision Detection and Volume Removal in Numerical Control Machining Simulation System
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 103
中文關鍵詞: 多軸工具機虛擬工具機虛擬機械手臂八元樹碰撞檢測幾何移除模擬切削力模擬
外文關鍵詞: Octrees, Collision Detection, Machining Simulation, Multi-Axis, Virtual Machine Tool, Virtual Robot Arm, Cutting Force Prediction
相關次數: 點閱:152下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應用多軸工具機加工及機械手臂的自動化製造在加工複雜曲面且高精度之製造產業,如航太、模具產業,扮演重要的角色。它須要軟體輔助分析、規劃、測試,達到高效率、高精度、穩定品質及降低成本的目的。模擬系統為智慧化製造重要的一環,高精度模擬須要大量運算,所以高效率的演算法及功能整合為重要課題。
    本論文以線延伸八元樹之資料結構與演算法進行幾何移除,並以共享式三角形延伸八元樹的碰撞檢測運算。切削幾何再經分析模擬出靜態切削力。線延伸八元樹以線為最小運算單位,透過八元樹將幾何分割並以線架構表示,以布林運算幾何移除模擬。以n為邊長上單位網格的數目,線延伸八元樹使用O(n)的空間。線延伸八元樹可降低切削模擬運算量及提升精度。共享式三角形延伸八元樹以三角網格為最小運算單位,以八元樹架構分享三角網格,由於生成時不以八元樹網格切割三角網格,所以生成速度快。三角網格與八元樹底層節點互有連結,故可即時(on-line)移除及生成,搭配幾何移除演算法作碰撞檢測。
    本論文提出的資料結構及演算法,可應用於整合虛擬工具機及機械手臂的碰撞檢測、切削幾何模擬、切削力模擬、機台運動模擬成一系統,並以工業實例五軸加工驗證模擬渦輪葉片及骨板自由曲面之加工。未來可擴增力學模型、計算幾何誤差、雲端操作等智慧化功能,輔助建立具有高適應性及高資源效率的工具機及機械手臂智慧製造系統。

    Multi-axis machine tool acts as an important role in manufacture, such as aerospace and mold industries that need producing surface with high complexity and precision. It requires computer aided analyzing, planning and testing to reach the demands of high efficiency, high precision, steady quality and low cost. Simulation system is important part of intelligence manufacturing. The high precision simulation required massive calculation. Hence the algorithm with high efficiency and the functions integration are important topics.
    In this study, Wires Extended Octrees method is proposed for volume removal simulation. And Shared Triangles Extended Octrees method is proposed for collision detection. The removed geometry is analyzed for simulating the static cutting force. The smallest unit of Wires Extended Octree is wire. The geometry is divided by Octree and each node contains wire structure. The volume removal is achieved by Boolean operation. The Wires Extended Octree costs the memory space of O(n), where n is the grid number on the edge of geometry. The Wires Extended Octree reduces the quantity of computation and raises the precision. The Shared Triangles Extended Octree applies triangle as the smallest computational unit, and shared triangles under the structure of Octree. Since there is no decomposition of any triangle, the modeling process is fast. The triangles and the leaf nodes of the Octree have links in both directions, so the modeling process can be on-line constructed and removed. The collision detection cooperates with the volume removal for the real-time simulation.
    The data structures and algorithms integrates the functions of collision detection, volume removal, cutting force estimation and motion simulation to a system for virtual machine tools and virtual robot arms. It is verified by industrial cases of five-axis milling of a turbine blade and free-form surface of a bone bracket. The intelligent functions such as the cutting force model, the geometric error model and the cloud manipulation can be expanded, to achieve a machine tools and robot arms work cell with high adaptivity and high efficiency.

    摘要 i Abstract iii Acknowledgement v List of Figures ix List of Tables xii Nomenclature xiii Chapter 1. Introduction 1 1.1. Background 1 1.2. Literature Review 1 1.2.1. Hierarchical Data Structures of Octrees 2 1.2.2. Collision Detection for NC Machining Simulation 3 1.2.3. Volume Removal Simulation for NC Machining 6 1.2.4. Evolution from Octrees to Wires-Extended Octrees 8 1.2.5. CWE and Cutting Force Simulation for NC Machining 13 1.3. Objective 13 1.4. Thesis Scope 14 Chapter 2. Shared Triangles Extended Octree and Collision Detection 16 2.1. Data Structure 16 2.2. Model Construction 19 2.3. Collision Detection Algorithm 21 2.4. A 2D Example 28 Chapter 3. Wires-Extended Octree and Volume Removal Simulation 33 3.1. Data Structure 33 3.2. Model Construction 35 3.2.1. Algorithm 35 3.2.2. A 2D Example 42 3.3. Triangulation 43 3.4. Volume Removal Algorithm 50 Chapter 4. CWE and Cutting Force Simulation 55 4.1. Transformation from Workpiece Coordinate to Running Tool Coordinate 55 4.2. Classification of Contact Area and Extraction of CWE 57 4.3. Prediction of Cutting Force 59 Chapter 5. Virtual Machine Tools and Virtual Robot Arms System 62 5.1. Mechanism of Machine Tool 62 5.2. Kinematic Chain and Component Tree 64 5.3. Implementation of Collsion Detection, Volume Removal and Cutting Force Simulation 67 Chapter 6. Results and Discussion 69 6.1. Shared Triangles Extended Octrees Collision Detection 69 6.1.1. Efficiency in performing collision detection on a virtual machine tool 69 6.1.2. The efficiency of collision detection for sophisticated and nearby geometries 72 6.1.3. Comparison test by adaptive octrees for collision detection 72 6.1.4. Comparison test by OBB-tree for rapid construction 73 6.1.5. Coordination between virtual machine tool and virtual robot arm 74 6.2. Wires Extended Octrees in Volume Removal 75 6.2.1. Efficiency in performing volume removal 75 6.2.2. Modeling Error 80 6.2.3. Comparisons with other volume removal methods 82 6.3. Verification of Cutting Force Simulation 85 6.4. NC Machining Simulation System and an 5-Axis Industrial Case of Milling a Turbine Blade 87 Chapter 7. Conclusions and Future Works 94 7.1. Conclusions 94 7.2. Recommendation for Future Work 96 REFERENCES 98

    Abdul Kadir, A., Xu, X., & Hämmerle, E., Virtual machine tools and virtual machining—A technological review. Robotics and Computer-Integrated Manufacturing, 27(3), 494–508. 2011.
    Altintas, Y., Kersting, P., Biermann, D., Budak, E., Denkena, B., & Lazoglu, I., Virtual process systems for part machining operations. CIRP Annals - Manufacturing Technology, 63(2), 585–605. 2014.
    Anderson, R. O., Detecting and eliminating collisions in NC machining. Computer-Aided Design, 10(4), 231–237. 1978.
    Bergen, G. van den, Efficient Collision Detection of Complex Deformable Models using AABB Trees. Journal of Graphics Tools, 2(4), 1–13. 1997.
    Bouhadja, K., & Bey, M., Survey on Simulation Methods in Multi-axis Machining. In G.-C. Yang, S.-I. Ao, & L. Gelman (Eds.), Transactions on Engineering Technologies (pp. 367–382). Springer Netherlands. 2015.
    Chang, J. W., Wang, W. P., & Kim, M. S., Efficient collision detection using a dual OBB-sphere bounding volume hierarchy. Computer-Aided Design, 42(1), 50–57. 2010.
    Chang, J.-W., & Kim, M.-S., Efficient triangle–triangle intersection test for OBB-based collision detection. Computers & Graphics, 33(3), 235–240. 2009.
    Engin, S., & Altintas, Y., Mechanics and dynamics of general milling cutters.: Part I: helical end mills. International Journal of Machine Tools and Manufacture, 41(15), 2195–2212. 2001.
    Erdim, H., & Sullivan, A., Cutter Workpiece Engagement Calculations for Five-axis Milling Using Composite Adaptively Sampled Distance Fields. Procedia CIRP, 8, 438–443. 2013.
    G. Garcia, J. F. L. C., A New Collision Detection Algorithm Using Octree Models, 93–98. 1989.
    Gottschalk, S., Lin, M. C., & Manocha, D., OBBTree: A Hierarchical Structure for Rapid Interference Detection. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New York, NY, USA: ACM (pp. 171–180). 1996.
    Kaneko, J., & Horio, K., Fast Cutter Workpiece Engagement Estimation Method for Prediction Of Instantaneous Cutting Force in Continuous Multi-Axis Controlled Machining. Procedia CIRP, 4, 151–156. 2012.
    Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S., & Ejiri, K., A flexible quantitative method for NC machining verification using a space-division based solid model. The Visual Computer, 7(2–3), 149–157. 1991.
    Kim, Y. H., & Ko, S. L., Improvement of cutting simulation using the octree method. The International Journal of Advanced Manufacturing Technology, 28(11–12), 1152–1160. 2006.
    Klosowski, J. T., Held, M., Mitchell, J. S. B., Sowizral, H., & Zikan, K., Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics, 4(1), 21–36. 1998.
    Kockara, S., Halic, T., Iqbal, K., Bayrak, C., & Rowe, R., Collision detection: A survey. In IEEE International Conference on Systems, Man and Cybernetics, 2007. ISIC (pp. 4046–4051). 2007.
    Lee, R. S., & Lin, Y. H., Development of universal environment for constructing 5-axis virtual machine tool based on modified D–H notation and OpenGL. Robotics and Computer-Integrated Manufacturing, 26(3), 253–262. 2010.
    Lee, R. S., & Mei, K. J., Motion and Virtual Cutting Simulation System for a Five-Axis Virtual Machine Tool. International Journal of Automation and Smart Technology, 1(1), 35–39. 2011.
    Li, Z. L., Niu, J. B., Wang, X. Z., & Zhu, L. M., Mechanistic modeling of five-axis machining with a general end mill considering cutter runout. International Journal of Machine Tools and Manufacture, 96, 67–79. 2015.
    Lin, Y. H., Study on Universal Construction of Five-axis Virtual Machine Tool Simulation System. M.S. thesis, Graduate Institute of Mechanical Engineering, National Cheng Kung University. 2004.
    LinuxCNC.org. (n.d.). Retrieved September 28, 2015, from http://www.linuxcnc.org/
    Liu, S. Q., Ong, S. K., Chen, Y. P., & Nee, A. Y. C., Real-time, dynamic level-of-detail management for three-axis NC milling simulation. Computer-Aided Design, 38(4), 378–391. 2006.
    Möller, T., & Trumbore, B., Fast, Minimum Storage Ray-Triangle Intersection. Journal of Graphics Tools, 2(1), 21–28. 1997.
    Naylor, B., Amanatides, J., & Thibault, W., Merging BSP trees yields polyhedral set operations. SIGGRAPH Comput. Graph., 24(4), 115–124. 1990.
    Roy, U., & Xu, Y., 3-D object decomposition with extended octree model and its application in geometric simulation of NC machining. Robotics and Computer-Integrated Manufacturing, 14(4), 317–327. 1998.
    Tian, J. X., Liao, Z., & Lei, X., A Fast Collision Detection Algorithm in Virtual NC Machine Tool. Applied Mechanics and Materials, 34–35, 497–501. 2010.
    Tukora, B., & Szalay, T., Multi-dexel based material removal simulation and cutting force prediction with the use of general-purpose graphics processing units. Advances in Engineering Software, 43(1), 65–70. 2012.
    Van Hook, T. Real-time Shaded NC Milling Display. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York, NY, USA: ACM (pp. 15–20). 1986.
    Yan, H. S.. Creative Design of Mechanical Devices. Springer. 1998.
    Yau, H. T., & Tsou, L. S., Efficient NC Simulation for Multi-Axis Solid Machining With a Universal APT Cutter. Journal of Computing and Information Science in Engineering, 9(2), 021001–021001. 2009.
    Yau, H. T., Tsou, L. S., & Tong, Y. C., Adaptive NC Simulation for Multi-axis Solid Machining. Computer-Aided Design and Applications, 2(1–4), 95–104. 2005.
    Zhang, Y., Xu, X., & Liu, Y., Numerical control machining simulation: a comprehensive survey. International Journal of Computer Integrated Manufacturing, 24(7), 593–609. 2011.

    下載圖示 校內:2021-06-12公開
    校外:2021-06-12公開
    QR CODE