簡易檢索 / 詳目顯示

研究生: 林彥廷
Lin, Yan-Ting
論文名稱: 磷酸化幾丁聚醣及氫氧基磷灰石奈米材料之製備與應用
The preparation and application of phosphorylated chitosan/hydroxyapatite nanomaterial
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 磷酸化幾丁聚醣氫氧基灰石填充物固態電解質
外文關鍵詞: Phosphorylated Chitosan, Hydroxyapatite, filler, solid state electrolyte
相關次數: 點閱:108下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用合成磷酸化幾丁聚醣(Phosphorylated Chitosan, PCS) 形成雙離子高分子,分別製備出磷酸化程度較低的PCS1及較高的PCS2並在水熱法條件下製備氫氧基磷灰石(Hydroxyapatite, HA),透過添加不同磷酸化程度的幾丁聚醣,進而誘導礦化出顆粒大小與形狀不同的氫氧基磷灰石,簡稱PCS1-HA與PCS2-HA。
    從SEM中可以觀察到PCS1-HA、PCS2-HA之平均粒徑相比HA有顯著的變化分別從138nm縮小至80nm與46nm且形狀從長棒狀轉變為短棒狀。透過TEM圖譜可以看到HA的晶格原子排列整齊,而PCS1-HA、PCS2-HA的原子排列出現了扭曲以及錯位,證明添加磷酸化幾丁聚醣會誘導抑制HA晶體的礦化生長。
    將HA、PCS1-HA和PCS2-HA作為固態高分子電解質的填充物。實驗結果證實,加入填充物後,其會撐開固態高分子與高分子間的空間,創建出一個可供離子傳輸的通道,使離子可以自由移動,而降低元件整體阻抗,增加離子導電度,進而提升超級電容器之電容值與能量密度。其中在0.45A/g電流密度下有添加HA、PCS1-HA和PCS2-HA填充物的電容與能量密度分別表現提升了5%、21%、27%,其中又以添加PCS2-HA的效果最佳。

    In this study, hydroxyapatite(HA) was prepared with hydrothermal method .PCS1-HA and PCS2-HA were induced by using phosphorylated chitosan(PCS1 and PCS2) with different degree of substitution as defect inducer. From SEM images, the average particle sizes of PCS1-HA and PCS2-HA were observed to respectively decrease significantly from 138 nm to 80 nm and 46 nm , compared to HA, and the shapes changed from long to short rods. From TEM analysis, the lattice atoms of HA were neatly aligned, while the atoms of PCS1-HA and PCS2-HA were distorted and misaligned, indicating the inhibition of crystal growth by carboxyl group along PCS1 and PCS2.
    HA, PCS1-HA, and PCS2-HA were used as fillers for CCS solid polymer electrolytes. We further investigated how the addition of fillers to the CCS solid state polymer electrolytes will affect the electrochemical performance of the supercapacitor. The experimental results demonstrate that the addition of fillers not only reduces the overall resistance but also increases the capacitancefor superior energy density of the supercapacitor. Accordingly, the capacitance and energy density of supercapacitor with HA, PCS1-HA and PCS2-HA fillers were improved by 5%, 21% and 27% respectively at 0.45A/g current density, among which PCS2-HA had the best effect.

    目錄 摘要 I Extend Abstract II 目錄 XII 圖目錄 XVI 表目錄 XIX 第一章 緒論 1 1.1前言 1 1.2幾丁聚醣 2 1.2.1幾丁聚醣材料特性與應用 2 1.2.2幾丁聚醣之合成方法 3 1.2.3幾丁聚醣之官能基修飾 6 1.3氫氧基磷灰石 10 1.3.1氫氧基磷灰石材料特性 10 1.3.2氫氧基磷灰石之合成方法 11 1.3.3添加劑合成之氫氧基磷灰石 16 1.4超級電容器 20 1.4.1超級電容器的介紹與應用 20 1.4.2超級電容器之結構與分類 21 1.4.3填料應用在固態電解質 26 1.5電化學分析方法 29 1.5.1電化學阻抗分析 29 1.5.2循環伏安法 32 1.5.3定電流充放電 33 1.6研究動機 36 第二章 利用磷酸化幾丁聚醣誘導礦化氫氧基磷灰石奈米材料 37 2.1實驗藥品 37 2.2實驗流程與步驟 39 2.2.1磷酸化幾丁聚醣之合成 39 2.2.2水熱法 40 2.2.3傅立葉轉換紅外線光譜儀(FTIR) 41 2.2.4熱重分析儀(TGA) 41 2.2.5 X射線繞射儀(XRD) 42 2.2.6超高解析場發射掃描式電子顯微鏡(SEM) 42 2.2.7高解析穿透電子顯微鏡(TEM) 43 2.2.8液態核磁共振儀(NMR) 44 2.3磷酸化幾丁聚醣之材料分析 45 2.3.1傅立葉轉換式紅外線光譜儀分析 45 2.3.2液態核磁共振儀分析 46 2.3.3能量分散光譜儀分析 48 2.3.4磷酸化幾丁聚醣之熱穩定分析 49 2.4氫氧基磷灰石之材料分析 50 2.4.1傅立葉轉換式紅外線光譜儀分析 50 2.4.2 X射線繞射儀 51 2.4.3超高解析場發射掃描式電子顯微鏡 52 2.4.4高解析穿透電子顯微鏡 53 第三章 氫氧基磷灰石作為超級電容器固態電解質中的填充物 56 3.1實驗藥品 56 3.2實驗流程與步驟 58 3.2.1固態高分子電解質膜製備 58 3.2.2電極前處理 59 3.2.3電極製作 59 3.2.4循環伏安法(CV) 60 3.2.5定電流充放電(GCD) 60 3.2.6交流阻抗法(EIS) 60 3.3固態高分子電解質之分析 61 3.3.1填充物濃度之影響導電度分析 61 3.3.2不同填充物之影響導電度分析 62 3.4超級電容器之電化學分析 63 3.4.1 Nyquist Plot 63 3.4.2 CV 64 3.4.3 GCD 66 3.4.4 Specific capacitance 67 3.4.5 IR-drop 69 3.4.6 Ragone plot 70 第四章 結論 71 參考文獻 72

    1. Crini, G., Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters, 2019. 17(4): p. 1623-1643.
    2. Kumar, M.R., et al., Chitosan chemistry and pharmaceutical perspectives. Chemical reviews, 2004. 104(12): p. 6017-6084.
    3. Muzzarelli, R. and C. Muzzarelli, Chitosan chemistry: relevance to the biomedical sciences. Polysaccharides I, 2005: p. 151-209.
    4. Aider, M., Chitosan application for active bio-based films production and potential in the food industry. LWT-food science and technology, 2010. 43(6): p. 837-842.
    5. Aranaz, I., et al., Functional characterization of chitin and chitosan. Current chemical biology, 2009. 3(2): p. 203-230.
    6. Arbia, W., et al., Chitin extraction from crustacean shells using biological methods–a review. Food Technology and Biotechnology, 2013. 51(1): p. 12-25.
    7. Percot, A., C. Viton, and A. Domard, Optimization of chitin extraction from shrimp shells. Biomacromolecules, 2003. 4(1): p. 12-18.
    8. Kaur, S. and G.S. Dhillon, Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical reviews in biotechnology, 2015. 35(1): p. 44-61.
    9. Dhillon, G.S., et al., Green synthesis approach: extraction of chitosan from fungus mycelia. Critical reviews in biotechnology, 2013. 33(4): p. 379-403.
    10. Hajji, S., et al., Structural differences between chitin and chitosan extracted from three different marine sources. International journal of biological macromolecules, 2014. 65: p. 298-306.
    11. Zhao, Y., R.-D. Park, and R.A. Muzzarelli, Chitin deacetylases: properties and applications. Marine drugs, 2010. 8(1): p. 24-46.
    12. Le Dung, P., et al., Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydrate Polymers, 1994. 24(3): p. 209-214.
    13. An, N., et al., An improved method for synthesizing N, N′-dicarboxymethylchitosan. Carbohydrate polymers, 2008. 73(2): p. 261-264.
    14. Aiping, Z., L. Jianhong, and Y. Wenhui, Effective loading and controlled release of camptothecin by O-carboxymethylchitosan aggregates. Carbohydrate polymers, 2006. 63(1): p. 89-96.
    15. Chen, L., Z. Tian, and Y. Du, Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials, 2004. 25(17): p. 3725-3732.
    16. Chen, X.-G. and H.-J. Park, Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, 2003. 53(4): p. 355-359.
    17. Xiang, Y., et al., Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. Journal of Membrane Science, 2009. 337(1-2): p. 318-323.
    18. Shirdast, A., A. Sharif, and M. Abdollahi, Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. Journal of Power Sources, 2016. 306: p. 541-551.
    19. Sakaguchi, T., T. Horikoshi, and A. Nakajima, Adsorption of uranium by chitin phosphate and chitosan phosphate. Agricultural and Biological Chemistry, 1981. 45(10): p. 2191-2195.
    20. Jayakumar, R., et al., Synthesis of phosphorylated chitosan by novel method and its characterization. International journal of biological macromolecules, 2008. 42(4): p. 335-339.
    21. Granja, P.L., et al., Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. Journal of Applied Polymer Science, 2001. 82(13): p. 3341-3353.
    22. Amaral, I., P. Granja, and M. Barbosa, Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. Journal of Biomaterials Science, Polymer Edition, 2005. 16(12): p. 1575-1593.
    23. Nishi, N., et al., Preparation and characterization of water-soluble chitin phosphate. International Journal of Biological Macromolecules, 1984. 6(1): p. 53-54.
    24. Nishi, N., et al., Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization. International Journal of Biological Macromolecules, 1986. 8(5): p. 311-317.
    25. Ma, G. and X.Y. Liu, Hydroxyapatite: hexagonal or monoclinic? Crystal Growth and Design, 2009. 9(7): p. 2991-2994.
    26. Irfan, M. and M. Irfan, Overview of hydroxyapatite; composition, structure, synthesis methods and its biomedical uses. Biomedical Letters, 2020. 6(1): p. 17-22.
    27. Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2002. 62(4): p. 600-612.
    28. Tsuchida, T., et al., Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Industrial & engineering chemistry research, 2008. 47(5): p. 1443-1452.
    29. Pandele, A., et al., Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications. Vacuum, 2017. 146: p. 599-605.
    30. Nayak, A.K., Hydroxyapatite synthesis methodologies: an overview. International Journal of ChemTech Research, 2010. 2(2): p. 903-907.
    31. Santos, M.H., et al., Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Materials Research, 2004. 7(4): p. 625-630.
    32. Bouyer, E., F. Gitzhofer, and M. Boulos, Morphological study of hydroxyapatite nanocrystal suspension. Journal of Materials Science: Materials in Medicine, 2000. 11(8): p. 523-531.
    33. Ferraz, M., F. Monteiro, and C. Manuel, Hydroxyapatite nanoparticles: a review of preparation methodologies. Journal of Applied Biomaterials and Biomechanics, 2004. 2(2): p. 74-80.
    34. Sadat-Shojai, M., Preparation of hydroxyapatite nanoparticles: comparison between hydrothermal and solvo-treatment processes and colloidal stability of produced nanoparticles in a dilute experimental dental adhesive. Journal of the Iranian Chemical Society, 2009. 6(2): p. 386-392.
    35. Manafi, S.A. and S. Joughehdoust, Synthesis of hydroxyapatite nanostructure by hydrothermal condition for biomedical application. Iranian Journal of Pharmaceutical Sciences, 2009. 5(2): p. 89-94.
    36. Liu, H., et al., Hydroxyapatite synthesized by a simplified hydrothermal method. Ceramics International, 1997. 23(1): p. 19-25.
    37. Pramanik, S., et al., Development of high strength hydroxyapatite by solid-state-sintering process. Ceramics International, 2007. 33(3): p. 419-426.
    38. Zhang, H.G. and Q. Zhu, Preparation of fluoride-substituted hydroxyapatite by a molten salt synthesis route. Journal of Materials Science: Materials in Medicine, 2006. 17(8): p. 691-695.
    39. Silva, C., et al., Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling. Journal of materials science, 2007. 42(11): p. 3851-3855.
    40. Fahami, A., R. Ebrahimi-Kahrizsangi, and B. Nasiri-Tabrizi, Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sciences, 2011. 13(1): p. 135-141.
    41. Mochales, C., et al., Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: Structural characterisation. Journal of alloys and compounds, 2011. 509(27): p. 7389-7394.
    42. Zhou, Z.-H., et al., Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Materials Research Bulletin, 2007. 42(9): p. 1611-1618.
    43. Wang, A., et al., Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers. Materials Letters, 2007. 61(10): p. 2084-2088.
    44. Zhu, A., et al., Frabicating hydroxyapatite nanorods using a biomacromolecule template. Applied Surface Science, 2011. 257(8): p. 3174-3179.
    45. Cao, M., et al., Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions. Langmuir, 2004. 20(11): p. 4784-4786.
    46. Wang, Y., et al., Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters, 2006. 60(12): p. 1484-1487.
    47. Jiang, D., et al., Shape-controlled synthesis of F-substituted hydroxyapatite microcrystals in the presence of Na2EDTA and citric acid. Journal of colloid and interface science, 2010. 350(1): p. 30-38.
    48. Zhu, R., et al., Morphology control of hydroxyapatite through hydrothermal process. Journal of alloys and Compounds, 2008. 457(1-2): p. 555-559.
    49. Lak, A., et al., Self‐Assembly of Dandelion‐Like Hydroxyapatite Nanostructures Via Hydrothermal Method. Journal of the American Ceramic Society, 2008. 91(10): p. 3292-3297.
    50. Arce, H., et al., Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca–EDTA complex. Polyhedron, 2004. 23(11): p. 1897-1901.
    51. Ho, J., T.R. Jow, and S. Boggs, Historical introduction to capacitor technology. IEEE Electrical Insulation Magazine, 2010. 26(1): p. 20-25.
    52. Hall, P.J. and E.J. Bain, Energy-storage technologies and electricity generation. Energy policy, 2008. 36(12): p. 4352-4355.
    53. Helmholtz, H.V., Studien über electrische Grenzschichten. Annalen der Physik, 1879. 243(7): p. 337-382.
    54. Stern, O., Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21‐22): p. 508-516.
    55. Grahame, D.C., The electrical double layer and the theory of electrocapillarity. Chemical reviews, 1947. 41(3): p. 441-501.
    56. Raza, W., et al., Recent advancements in supercapacitor technology. Nano Energy, 2018. 52: p. 441-473.
    57. Libich, J., et al., Supercapacitors: Properties and applications. Journal of Energy Storage, 2018. 17: p. 224-227.
    58. Frackowiak, E., Electrode materials with pseudocapacitive properties. Edited by Francois Béguin and Elzbieta Fr şackowiak, 2013.
    59. 葉文亮, 以苯乙烯-馬來酸酐共聚合物接枝聚乙二醇之合成及其應用. 2002.
    60. Cheng, X., et al., Gel polymer electrolytes for electrochemical energy storage. Advanced Energy Materials, 2018. 8(7): p. 1702184.
    61. Hoang Huy, V.P., S. So, and J. Hur, Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries. Nanomaterials, 2021. 11(3): p. 614.
    62. Ortega, P.F., et al., Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochimica Acta, 2016. 188: p. 809-817.
    63. Arunkumar, R., R.S. Babu, and M.U. Rani, Investigation on Al 2 O 3 doped PVC–PBMA blend polymer electrolytes. Journal of Materials Science: Materials in Electronics, 2017. 28(4): p. 3309-3316.
    64. Instruments, G., Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 2007: p. 1-30.
    65. Lasia, A., Electrochemical impedance spectroscopy and its applications, in Modern aspects of electrochemistry. 2002, Springer. p. 143-248.
    66. Mei, B.-A., et al., Physical interpretations of Nyquist plots for EDLC electrodes and devices. The Journal of Physical Chemistry C, 2018. 122(1): p. 194-206.
    67. Mabbott, G.A., An introduction to cyclic voltammetry. Journal of Chemical education, 1983. 60(9): p. 697.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE