| 研究生: |
陳冠儒 Chen, Guan-Ru |
|---|---|
| 論文名稱: |
使用適應性之程序管理策略以改善Android平台上之使用者經驗 Using Adaptive Process Management Policies to Improve User Experience on Android |
| 指導教授: |
謝錫堃
Shieh, Ce-Kuen |
| 共同指導教授: |
黃祖基
Huang, Tzu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | Android 、程序管理 、適應性 、使用者經驗 |
| 外文關鍵詞: | Android, process management, adaptive, user experience |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Android在近年來已經成為最普遍的行動裝置作業系統,Android使用其內建之程序管理策略來管理常駐在記憶體中之程序,但是這個固定的程序管理策略並沒有辦法滿足各式各樣的使用者對於行動裝置上應用程式的不同使用行為。因此,在這篇論文裡我們提出了適應性之程序管理策略來改善Android平台上之使用者經驗,比如說像是縮短應用程式的反應時間。此適應性之程序管理策略能夠觀察使用者對於行動裝置上應用程式的使用情形,並選擇適合該使用者的程序管理策略,即使該使用者的使用行為會隨著時間而有所改變。在我們的實驗結果中,我們也證明了我們所提出的適應性之程序管理策略能夠有效地根據使用者的行為來選擇適當的程序管理策略,滿足各式各樣的使用者對於行動裝置上應用程式之不同使用行為。
Android has become the most popular operation system in mobile devices. Android uses its built-in process management policy to manage processes in memory. However, Android fails to satisfy people with different habits of using applications by the fixed process management policy. In this thesis, Adaptive Process Management Policy (APMP) is proposed to improve user experience, e.g. short application response time. APMP can observe the user behavior of using various applications and adaptively choose an appropriate process management policy for the user, even though the user may change habits sometimes. In the experiments, we show that APMP with the capability of dynamically selecting an appropriate process management policy can meet requirements of users with various application habits.
1. Android http://developer.android.com/index.html.
2. Linux kernel http://www.kernel.org/.
3. Ari, I., et al., ACME: adaptive caching using multiple experts, in Proceedings in Informatics, 2002.
4. Esfahbod, B., Preload—An adaptive prefetching daemon: Thesis, University of Toronto, 2006.
5. Falaki, H., et al., Diversity in smartphone usage, in Proceeding of international conference on Mobile systems, applications, and services, ACM, 2010.
6. Glass, G. and Cao, P., Adaptive page replacement based on memory reference behavior, SIGMETRICS Perform. Eval. Rev., 25(1): p. 115-126, 1997.
7. Gramacy, R.B., et al., Adaptive caching by refetching, NIPS, 15: p. 1465-1472, 2002.
8. Jiang, S. and Zhang, X., Adaptive page replacement to protect thrashing in Linux, in Proceedings of the 5th annual Linux Showcase & Conference - Volume 5, Oakland, California, USENIX Association, 2001.
9. Kang, J.M., Seo, S., and Hong, J.W.K., Personalized Battery Lifetime Prediction for Mobile Devices based on Usage Patterns, JCSE, 5(4): p. 338-345, 2011.
10. Lee, H., Choi, Y.S., and Kim, Y.J., An adaptive user interface based on spatiotemporal structure learning, IEEE Communications Magazine, 49(6): p. 118-124, 2011.
11. Oliver, E., The challenges in large-scale smartphone user studies, in Proceeding of ACM International Workshop on Hot Topics in Planet-scale Measurement, ACM, 2010.
12. Silberschatz, A., Galvin, P.B., and Gagne, G., Operating System Concepts (Seventh Edition), John Wiley & Sons, 2004.
13. Smith, A., Mobile access 2010, Pew Internet & American Life Project, 2010.
14. Soikkeli, T., Karikoski, J., and Hammainen, H., Diversity and end user context in smartphone usage sessions, in Proceeding of Next Generation Mobile Applications, Services and Technologies, IEEE, 2011.
15. Tanenbaum, A.S., Morden Operating System (Second Edition), Prentice Hall, 2001.
16. Verkasalo, H. and Hämmäinen, H., A handset-based platform for measuring mobile service usage, Info, 9(1): p. 80-96, 2007.
17. Xu, Q., et al., Identifying Diverse Usage Behaviors of Smartphone Apps, in Proceedings of ACM SIGCOMM conference on Internet measurement conference, ACM, 2011.
18. Zipf, G.K., Human behavior and the principle of least effort: An introduction to human ecology, Hafner Publishing Co. New York, 1965.