簡易檢索 / 詳目顯示

研究生: 鍾德華
Chung, De-Hua
論文名稱: 聲波振動對火焰合成奈米碳結構的影響
Acoustic Modulation on Flame Synthesis of Carbon Nano-Materials
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 114
中文關鍵詞: 燃燒合成自然擺盪頻率聲波共振頻率乙烯噴流火焰奈米碳管奈米碳球
外文關鍵詞: Flame synthesis, Natural flickering frequency, Acoustically resonant frequency, Ethylene jet diffusion flame, Carbon nanotubes, Carbon nano-onions
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用聲波振動乙烯噴流擴散火焰,進行燃燒合成奈米碳結構。並用冷流場模擬氣體濃度與軸向速度分佈,以探討適合奈米碳結構的可能原因。
    火焰型態方面,平均流速20 cm/s之乙烯噴流火焰,在振動功率P = 15 W,振動頻率f = 0 ~ 80 Hz的情況下,可以在f = 10 ~ 20 Hz及60 ~ 70 Hz的兩個區間內觀察到雙層火焰的結構。低頻振動(f = 10 ~ 20 Hz)之頻率接近自然擺盪頻率,浮力與流場耦合產生共振現象,火焰形成雙層結構。聲波共振(f = 60 ~ 70 Hz)則是在振動頻率66 Hz下,燃燒管(fuel line)中傳遞的聲波以燃燒管兩端為節點,產生半波共振模態,火焰亦為雙層的結構。然而雙層火焰結構在暫態影像拍攝的時候可發現,其為火焰徑向的直徑變化,經過視覺暫留的觀察所產生,火焰薄層仍然只有一層。
    暫態火焰的變化中,火焰型狀有梭型、錐形與蕈狀。高溫熱傳使折射率改變,可取得外部渦漩輪廓之Schlieren影像,並藉此判斷渦漩方向與冷流場模擬匹配。冷流場之模擬等值線的變化,與暫態火焰與Schiliren影像之趨勢接近,可觀察燃燒器出口處的流場變化。
    於z = 5與10 mm位置取樣,在f = 10 ~ 80 Hz中奈米碳結構皆為葡萄狀堆積的奈米碳球。其中f = 10 與66 Hz取樣之奈米碳球較f = 0 Hz數量皆高出數個量級,其他頻率的奈米碳球則比兩種共振頻率較少,但比f = 0 Hz的產量較多。若減少乙烯氣體之濃度,則奈米碳球之數量也隨之減少,甚至在乙烯濃度20%,f = 10 Hz的產物轉變為奈米碳管。

    Acoustically modulated ethylene jet diffusion flame was used in the synthesis of carbon nano-materials. The cold-flow axial velocity and gas concentration were simulated to search the suitable condition of synthesizing.
    The flame types were observed in an ethylene jet flow with mean velocity of 20 cm/s and acoustic frequency (f) of 0 ~ 80 Hz. Double-layer flame was formed at f = 10 ~ 20 Hz and 60 ~ 70 Hz because of resonance near the natural flickering frequency and acoustically resonant frequency, respectively. The former was caused by the flame/buoyancy coupling, while the latter was caused by the acoustics/fuel line coupling. However, the double–layer flame was only a single-layer flame, which was formed by the persistence of vision with quick change of flame diameter.
    There were shuttle-, cone- and mushroom-like flames observed in the instantaneous flames. The Schlieren images of vortices would be caught due to the change of refractive index, which was resulted in with heat transfer. The sequence of Schlieren images were determined by vortex growth in the cold flow simulation. The isopleths (cold flow simulation) of axial velocity and ethylene concentration matched respectively the vortical motions and Schiliren images in the flow field. It can help to analyze the suitable condition for flame synthesis.
    The carbon nano-onions (CNOs) were mainly deposited grape-likely on the Ni substrate. The amount of CNOs at f = 10 and 66 Hz were both formed much more those formed at f = 0 Hz (z = 5 and 10 mm). At the other frequency (f = 30 ~ 50 and 80 Hz), the amount of CNOs were less those at two resonant regions (f = 10 and 66 Hz), but more than those without acoustic modulation (f = 0 Hz). CNOs would be decreased with the decreasing of ethylene concentration, even carbon nanotubes (CNTs) would replace CNOs to be the main product at ethylene concentration 20% and f = 10 Hz.

    CONTENTS I LIST OF FIGURES V NOMENCLATURE IX 1. INTRODUCTION 1 1.1 Applications and Synthesis of Carbon Materials 1 1.2 Flame Synthesis of Carbon Nano-Materials 2 1.2.1 Fuel-Rich Premixed Flames 3 1.2.2 Diffusion Flames 5 1.2.3 Flame Synthesis of Metal Nano-Materials 9 1.2.4 Mechanisms of CNT and CNO Synthesis 9 1.3 Acoustic Modulation in Diffusion Flames 11 1.4 Objectives 12 2. EXPERIMENTS 14 2.1 Burner System 14 2.1.1 Gas Supply System 14 2.1.2 Acoustic Modulation System 14 2.1.3 Fuel Line 15 2.2 Measurement and Sampling Systems 15 2.2.1 Camera and Image Tools 15 2.2.2 Temperature Measurement System 16 2.2.3 Hot-Wire Anemometry 16 2.2.4 Sampling System 17 2.3 Nano-Analytic Instruments 17 2.3.1 Field Emission Scanning Electron Microscopy 18 2.3.2 Transmission Electron Microscopy 18 2.3.3 Raman Spectrophotometer 19 2.4 Experimental Methods and Steps 21 2.4.1 Flame Types and Stability 21 2.4.2 Gas Temperature Measurement 21 2.4.3 Axial Velocity of Cold Flow without Acoustic Modulation 22 2.4.4 Axial Velocity of Cold Flow with Acoustic Modulation 22 2.4.5 Carbon Nano-Material Sampling and Analyzing 22 3. SIMULATION METHODS AND MODELS 24 3.1 Physical Model and Assumptions 24 3.2 Governing Equations 24 3.3 Boundary Conditions 25 3.4 Mesh Creation and Simulation Solver 26 3.4.1 ANSYS Fluent 26 3.4.2 Discretization Methods 26 3.5 Simulation Tactics for Acoustic Modulation 27 3.5.1 Cold Flow without Acoustic Modulation 27 3.5.2 Cold Flow with Acoustic Modulation 27 4. VELOCITY FIELD OF FREE JET WITHOUT AND WITH ACOUSTIC MODULATION 29 4.1 Axial Velocity without Acoustic Modulation 29 4.2 Experimental Measurement of Axial Velocity at 66 Hz 30 4.3 Numerical Simulation of Axial Velocity at 10 and 66 Hz 31 5. ACOUSTIC MODULATION AND NITROGEN DILUTION EFFECT ON JET DIFFUSION FLAMES 34 5.1 Jet Diffusion Flames with Acoustic Modulation 34 5.1.1 Flame Types and Stability 34 5.1.2 Flame Height and Gas Temperature Measurements 36 5.2 Nitrogen Dilution Effect in Jet Diffusion Flames with Acoustic Modulation 37 5.2.1 Flame Types and Stability 38 5.2.2 Flame Height and Gas Temperature Measurements 43 6. FLAME STRUCTURES, SCHILIREN IMAGES AND COLD FLOW SIMULATIONS 45 6.1 Flame Structures and Schiliren Images 45 6.1.1 For 10 Hz 45 6.1.2 For 66 Hz 46 6.2 Cold Flow Simulations 47 6.2.1 For 10 Hz 47 6.2.2 For 66 Hz 49 7. ANALYSIS ON CARBON NANO-MATERIALS 52 7.1 Carbon Nano-Materials Synthesized by Jet Diffusion Flames with Acoustic Modulation 52 7.1.1 At z = 5 mm 52 7.1.2 At z = 10 mm 54 7.2 Carbon Nano-Materials Synthesized by N2-Diluted Jet Diffusion Flames with Acoustic Modulation 57 8. CONCLUSIONS 60 9. REFERENCES 63 10. FIGURES 74 11. PUBLICATION LIST 113

    1. Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., and Smalley, R. E., "C-60 - Buckminsterfullerene," Nature, Vol. 318(6042), pp. 162-163, 1985.
    2. Iijima, S., "Helical Microtubules of Graphitic Carbon," Nature, Vol. 354(6348), pp. 56-58, 1991.
    3. Kang, J. L., Li, J. J., Du, X. W., Shi, C. S., Zhao, N. Q., and Nash, P., "Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper," Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Vol. 475(1-2), pp. 136-140, 2008.
    4. Subramoney, S., "Novel nanocarbons - Structure, properties, and potential applications," Adv. Mater., Vol. 10(15), pp. 1157-1171, 1998.
    5. Liu, Y., Vander Wal, R. L., and Khabashesku, V. N., "Functionalization of carbon nano-onions by direct fluorination," Chem. Mat., Vol. 19(4), pp. 778-786, 2007.
    6. Choi, M., Altman, I. S., Kim, Y. J., Pikhitsa, P. V., Lee, S., Park, G. S., Jeong, T., and Yoo, J. B., "Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene," Adv. Mater., Vol. 16(19), pp. 1721-1725, 2004.
    7. Loutfy, R. O., Pugazhendhi, P., Tasaki, K., and Venkatesan, A., Fullerene-based electrolyte for fuel cells, 2005, US Patent Specification. p. 6949304.
    8. Guo, J. J., Yang, X. W., Yao, Y. L., Wang, X. M., Liu, X. G., and Xu, B. S., "Pt/onion-like fullerenes as catalyst for direct methanol fuel cell," Rare Metals, Vol. 25, pp. 305-308, 2006.
    9. Koudoumas, E., Kokkinaki, O., Konstantaki, M., Couris, S., Korovin, S., Detkov, P., Kuznetsov, V., Pimenov, S., and Pustovoi, V., "Onion-like carbon and diamond nanoparticles for optical limiting," Chem. Phys. Lett., Vol. 357(5-6), pp. 336-340, 2002.
    10. Shenderova, O., Tyler, T., Cunningham, G., Ray, M., Walsh, J., Casulli, M., Hens, S., McGuire, G., Kuznetsov, V., and Lipa, S., "Nanodiamond and onion-like carbon polymer nanocomposites," Diam. Relat. Mat., Vol. 16(4-7), pp. 1213-1217, 2007.
    11. Maksimenko, S. A., Rodionova, V. N., Slepyan, G. Y., Karpovich, V. A., Shenderova, O., Walsh, J., Kuznetsov, V. L., Mazov, I. N., Moseenkov, S. I., Okotrub, A. V., and Lambin, P., "Attenuation of electromagnetic waves in onion-like carbon composites," Diam. Relat. Mat., Vol. 16(4-7), pp. 1231-1235, 2007.
    12. Tenne, R., Rapoport, L., Lvovsky, M., Feldman, Y., and Leshchinsky, V., "Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices," No. 6710020, 2004.
    13. Lowe, H. M., Fullerene lubricant, 2004, US Patent Specification. p. 20050221995.
    14. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., "Continuous production of aligned carbon nanotubes: a step closer to commercial realization," Chem. Phys. Lett., Vol. 303(5-6), pp. 467-474, 1999.
    15. Chen, X. C., Wang, H., and He, J. H., "Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors," Nanotechnology, Vol. 19(32), pp. 325607, 2008.
    16. Li, Y. L., Zhang, L. H., Zhong, X. H., and Windle, A. H., "Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions," Nanotechnology, Vol. 18(22), pp. 225604, 2007.
    17. Cabioc'h, T., Thune, E., Riviere, J. P., Camelio, S., Girard, J. C., Guerin, P., Jaouen, M., Henrard, L., and Lambin, P., "Structure and properties of carbon onion layers deposited onto various substrates," J. Appl. Phys., Vol. 91(3), pp. 1560-1567, 2002.
    18. Bystrzejewski, M., Huczko, A., Lange, H., Baranowski, P., Cota-Sanchez, G., Soucy, G., Szczytko, J., and Twardowski, A., "Large scale continuous synthesis of carbon-encapsulated magnetic nanoparticles," Nanotechnology, Vol. 18(14), pp. 145608, 2007.
    19. Huang, S. M., Dai, L. M., and Mau, A. W. H., "Patterned growth and contact transfer of well-aligned carbon nanotube films," J. Phys. Chem. B, Vol. 103(21), pp. 4223-4227, 1999.
    20. Journet, C. and Bernier, P., "Production of carbon nanotubes," Appl. Phys. A-Mater. Sci. Process., Vol. 67(1), pp. 1-9, 1998.
    21. Katoh, R., Tasaka, Y., Sekreta, E., Yumura, M., Ikazaki, F., Kakudate, Y., and Fujiwara, S., "Sonochemical production of a carbon nanotube," Ultrason. Sonochem., Vol. 6(4), pp. 185-187, 1999.
    22. Goel, A., Hebgen, P., Vander Sande, J. B., and Howard, J. B., "Combustion synthesis of fullerenes and fullerenic nanostructures," Carbon, Vol. 40(2), pp. 177-182, 2002.
    23. Howard, J. B., Daschowdhury, K., and Vandersande, J. B., "Carbon shells in flames," Nature, Vol. 370(6491), pp. 603-603, 1994.
    24. DasChowdhury, K., Howard, J. B., and VanderSande, J. B., "Fullerenic nanostructures in flames," J. Mater. Res., Vol. 11(2), pp. 341-347, 1996.
    25. Height, M. J., Howard, J. B., and Tester, J. W., "Flame synthesis of single-walled carbon nanotubes," Proc. Combust. Inst., Vol. 30, pp. 2537-2543, 2005.
    26. Wen, J. Z., Richter, H., Green, W. H., Howard, J. B., Treska, M., Jardim, P. M., and Sande, J. B. V., "Experimental study of catalyst nanoparticle and single walled carbon nanotube formation in a controlled premixed combustion," Journal of Materials Chemistry, Vol. 18(13), pp. 1561-1569, 2008.
    27. Height, M. J., Howard, J. B., Tester, J. W., and Sande, J. B. V., "Flame synthesis of single-walled carbon nanotubes," Carbon, Vol. 42(11), pp. 2295-2307, 2004.
    28. Diener, M. D., Nichelson, N., and Alford, J. M., "Synthesis of single-walled carbon nanotubes in flames," J. Phys. Chem. B, Vol. 104(41), pp. 9615-9620, 2000.
    29. Vander Wal, R. L., "Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment," Combust. Flame, Vol. 130(1-2), pp. 37-47, 2002.
    30. Vander Wal, R. L. and Ticich, T. M., "Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers," J. Phys. Chem. B, Vol. 105(42), pp. 10249-10256, 2001.
    31. Vander Wal, R. L. and Ticich, T. M., "Comparative flame and furnace synthesis of single-walled carbon nanotubes," Chem. Phys. Lett., Vol. 336(1-2), pp. 24-32, 2001.
    32. Vander Wal, R. L. and Hall, L. J., "Ferrocene as a precursor reagent for metal-catalyzed carbon nanotubes: Competing effects," Combust. Flame, Vol. 130(1-2), pp. 27-36, 2002.
    33. Vander Wal, R. L., "Flame synthesis of Ni-catalyzed nanofibers," Carbon, Vol. 40(12), pp. 2101-2107, 2002.
    34. Vander Wal, R. L., Berger, G. M., and Hall, L. J., "Single-walled carbon nanotube synthesis via a multi-stage flame configuration," J. Phys. Chem. B, Vol. 106(14), pp. 3564-3567, 2002.
    35. Vander Wal, R. L., Hall, L. J., and Berger, G. M., "Optimization of flame synthesis for carbon nanotubes using supported catalyst," J. Phys. Chem. B, Vol. 106(51), pp. 13122-13132, 2002.
    36. Vander Wal, R. L., Hall, L. J., and Berger, G. M., "The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts," Proc. Combust. Inst., Vol. 29, pp. 1079-1085, 2002.
    37. Nakazawa, S., Yokomori, T., and Mizomoto, M., "Flame synthesis of carbon nanotubes in a wall stagnation flow," Chem. Phys. Lett., Vol. 403(1-3), pp. 158-162, 2005.
    38. Woo, S. K., Hong, Y. T., and Kwon, O. C., "Flame synthesis of carbon nanotubes using a double-faced wall stagnation flow burner," Carbon, Vol. 47(3), pp. 912-916, 2009.
    39. Merchan-Merchan, W., Saveliev, A., Kennedy, L. A., and Fridman, A., "Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts," Chem. Phys. Lett., Vol. 354(1-2), pp. 20-24, 2002.
    40. Merchan-Merchan, W., Saveliev, A. V., and Kennedy, L. A., "High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control," Carbon, Vol. 42(3), pp. 599-608, 2004.
    41. Saveliev, A. V., Merchan-Merchan, W., and Kennedy, L. A., "Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame," Combust. Flame, Vol. 135(1-2), pp. 27-33, 2003.
    42. Silvestrini, M., Merchan-Merchan, W., Richter, H., Saveliev, A., and Kennedy, L. A., "Fullerene formation in atmospheric pressure opposed flow oxy-flames," Proc. Combust. Inst., Vol. 30, pp. 2545-2552, 2005.
    43. Hou, S. S., Chung, D. H., and Lin, T. H., "Flame synthesis of carbon nanotubes in a rotating counterflow," Journal of Nanoscience and Nanotechnology, Vol. 9(8), pp. 4826-4833, 2009.
    44. Hou, S. S., Chung, D. H., and Lin, T. H., "High-yield synthesis of carbon nano-onions in counterflow diffusion flames," Carbon, Vol. 47(4), pp. 938-947, 2009.
    45. Yuan, L. M., Li, T. X., and Saito, K., "Growth mechanism of carbon nanotubes in methane diffusion flames," Carbon, Vol. 41(10), pp. 1889-1896, 2003.
    46. Yuan, L. M., Saito, K., Pan, C. X., Williams, F. A., and Gordon, A. S., "Nanotubes from methane flames," Chem. Phys. Lett., Vol. 340(3-4), pp. 237-241, 2001.
    47. Yuan, L. M., Saito, K., Hu, W. C., and Chen, Z., "Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes," Chem. Phys. Lett., Vol. 346(1-2), pp. 23-28, 2001.
    48. Arana, C. P., Puri, I. K., and Sen, S., "Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers," Proc. Combust. Inst., Vol. 30, pp. 2553-2560, 2005.
    49. Vander Wal, R. L., "Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes," Chem. Phys. Lett., Vol. 324(1-3), pp. 217-223, 2000.
    50. Vander Wal, R. L., Ticich, T. M., and Curtis, V. E., "Diffusion flame synthesis of single-walled carbon nanotubes," Chem. Phys. Lett., Vol. 323(3-4), pp. 217-223, 2000.
    51. Liu, T. C. and Li, Y. Y., "Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method," Carbon, Vol. 44(10), pp. 2045-2050, 2006.
    52. Lee, G. W., Jurng, J., and Hwang, J., "Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame," Combust. Flame, Vol. 139(1-2), pp. 167-175, 2004.
    53. Lee, G. W., Jurng, J., and Hwang, J. H., "Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame," Carbon, Vol. 42(3), pp. 682-685, 2004.
    54. Xu, F. S., Liu, X. F., and Tse, S. D., "Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames," Carbon, Vol. 44(3), pp. 570-577, 2006.
    55. Xu, F., Liu, X. F., Tse, S. D., Cosandey, F., and Kear, B. H., "Flame synthesis of zinc oxide nanowires," Chem. Phys. Lett., Vol. 449(1-3), pp. 175-181, 2007.
    56. Merchan-Merchan, W., Saveliev, A. V., and Taylor, A. M., "Nucleation and growth mechanism for flame synthesis of MoO2 hollow microchannels with nanometer wall thickness," Micron, Vol. 40(8), pp. 821-826, 2009.
    57. Li, T. X., Kuwana, K., Saito, K., Zhang, H., and Chen, Z., "Temperature and carbon source effects on methane-air flame synthesis of CNTs," Proc. Combust. Inst., Vol. 32, pp. 1855-1861, 2009.
    58. Chen, X. H., Deng, F. M., Wang, J. X., Yang, H. S., Wu, G. T., Zhang, X. B., Peng, J. C., and Li, W. Z., "New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition," Chem. Phys. Lett., Vol. 336(3-4), pp. 201-204, 2001.
    59. Higgins, B., "On the sound produced by a current of hydrogen gas paffing through a tube," A Journal of Natural Philosophy, Chemistry and the Arts, Vol. 1, pp. 129-131, 1802.
    60. Strawa, A. W. and Cantwell, B. J., "Visualization of the structure of a pulsed methane-air diffusion flame," Phys. Fluids, Vol. 28(8), pp. 2317-2320, 1985.
    61. Gore, J., Minis, I., and Jang, J., "Acoustically modulated free jet flames," in AIAA, 28th Aerospace Sciences Meeting, 1990, Reno, Nevada, United States.
    62. Kim, T. K., Park, J., and Shin, H. D., "Mixing mechanism near the nozzle exit in a tone excited non-premixed jet frame," Combust. Sci. Technol., Vol. 89(1-4), pp. 83-100, 1993.
    63. Lee, K. M., Kim, T. K., Kim, W. J., Kim, S. G., Park, J., and Keel, S. I., "A visual study on flame behavior in tone-excited non-premixed jet flames," Fuel, Vol. 81(17), pp. 2249-2255, 2002.
    64. Chao, Y. C., Jeng, M. S., and Han, J. M., "Visualization and image processing of an acoustically excited jet flow," Exp. Fluids, Vol. 12(1-2), pp. 29-40, 1991.
    65. Chao, Y. C. and Jeng, M. S., "Behavior of the lifted jet flame under acoustic excitation," Proc. Combust. Inst., Vol. 24, pp. 333-340, 1992.
    66. Chao, Y. C., Yuan, T., and Jong, Y. C., "Measurements of the stabilization zone of a lifted jet flame under acoustic excitation," Exp. Fluids, Vol. 17(6), pp. 381-389, 1994.
    67. Chao, Y. C., Yuan, T., and Tseng, C. S., "Effects of flame lifting and acoustic excitation on the reduction of NOx emissions," Combust. Sci. Technol., Vol. 113(1), pp. 49-65, 1996.
    68. Chao, Y. C., Jong, Y. C., and Sheu, H. W., "Helical-mode excitation of lifted flames using piezoelectric actuators," Exp. Fluids, Vol. 28(1), pp. 11-20, 2000.
    69. Demare, D. and Baillot, F., "Acoustic enhancement of combustion in lifted nonpremixed jet flames," Combust. Flame, Vol. 139(4), pp. 312-328, 2004.
    70. Shaddix, C. R. and Smyth, K. C., "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame, Vol. 107(4), pp. 418-452, 1996.
    71. Kaplan, C. R., Shaddix, C. R., and Smyth, K. C., "Computations of enhanced soot production in time-varying CH4/air diffusion flames," Combust. Flame, Vol. 106(4), pp. 392-405, 1996.
    72. Chung, D. H., Lin, T. H., and Hou, S. S., "Flame synthesis of carbon nano-onions enhanced by acoustic modulation," Nanotechnology, Vol. 21(43), pp. 435604, 2010.
    73. eFunda, "Hot-wire Anemometers: Introduction," 2009, Available from: http://www.efunda.com/designstandards/sensors/hot_wires/hot_wires_intro.cfm.
    74. 王孟亮, 拉曼光譜學及其在生化上的應用, 1983, 科學月刊.
    75. Wikipedia, "Raman scattering," 2012, Available from: http://en.wikipedia.org/wiki/Raman_scattering.
    76. Patankar, S. V., "Numerical heat transfer and fluid flow (Series in computational methods in mechanics and thermal sciences)," New York: McGraw-Hill, 1980.
    77. Patankar, S. V. and Spalding, D. B., "A calculation procedure for heat, mass and momentum transfer in 3-dimensional parabolic flows," Int. J. Heat Mass Transf., Vol. 15(10), pp. 1787-1803, 1972.
    78. Kimura, I., "Stability of laminar-jet flames," Proc. Combust. Inst., Vol. 10(1), pp. 1295-1300, 1965.
    79. Lakshminarasimhan, K., Clemens, N. T., and Ezekoye, O. A., "Characteristics of strongly-forced turbulent jets and non-premixed jet flames," Exp. Fluids, Vol. 41(4), pp. 523-542, 2006.
    80. Hermanson, J. C., Dugnani, R., and Johari, H., "Structure and flame length of fully-modulated, turbulent diffusion flames," Combust. Sci. Technol., Vol. 155, pp. 203-225, 2000.
    81. Homae, T., Wakabayashi, K., Nakamura, K. G., Kondo, K., and Yoshida, M., "Raman scattering and photoluminescence of amorphous diamond fabricated from C-60 fullerene by shock compression," J. Mater. Sci. Lett., Vol. 20(12), pp. 1107-1108, 2001.
    82. Serp, P., Feurer, R., Kalck, P., Kihn, Y., Faria, J. L., and Figueiredo, J. L., "A chemical vapour deposition process for the production of carbon nanospheres," Carbon, Vol. 39(4), pp. 621-626, 2001.

    下載圖示 校內:2013-08-01公開
    校外:2013-08-01公開
    QR CODE