| 研究生: |
陳奕潔 Chen, Yi-Jie |
|---|---|
| 論文名稱: |
營造業節能減碳措施資料庫建立 Establishment of energy and emission reduction initiatives for the construction industry |
| 指導教授: |
張行道
Chang, Andrew S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 節能減碳措施 、生命週期階段 、永續報告書 、分類架構 、減碳措施資料庫 、營建業 |
| 外文關鍵詞: | energy saving and carbon reduction initiatives, life cycle stages, sustainability report, categorization framework, carbon reduction initiatives database, construction industry |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應節能減碳趨勢,研究提出節能減碳的策略與措施,企業亦採取環境措施,揭露於永續報告書中。然而這些措施缺乏系統性的架構整併,不易選擇與規劃採用。
本研究建立營建業節能減碳措施的資料庫。首先回顧15 篇國際文獻,其涵蓋營建公司、建築、道路、城市四個領域,及國內5家建設和5家營造,共10家公司2022年永續報告書,找出其節能減碳措施。然後建立減碳措施分類架構,以五個生命週期階段,與材料、技術、管理三面向為雙軸,先分析文獻措施性質與類別後整併,納入減碳措施分類架構,公司措施依性質分為主要措施、法規要求、減碳準備、普科或觀念4類,再將主要措施納入減碳措施分類架構,最後整併國內外措施,建立減碳措施資料庫。
研究結果顯示,國際文獻中的措施多樣且具有深度,從概念性到具體執行皆有。15篇國際文獻共184個措施中,生命週期以材料生產階段的措施有68個、占37%較多,面向以管理類資源/流程優化有79個、占43%最多。隱含營建工程的減碳要在材料生產過程上改進,在管理上多注意資源及流程的優化。
國內公司提出的措施性質較零散,缺乏明確關聯性。十家公司共提出165個措施中,主要措施多與工程工地相關,有91個、占55%,其中材料設備有36個措施,顯示國內公司對於工程工地提出的措施較明確有效,並重視材料設備的選擇。剩下74個非措施較與公司辦公室相關,有58%為營運維護階段,是針對公司營運政策,或是辦公大樓採行的措施,性質較一般、簡單。
整合國內外共275個措施,依材料、技術、管理三面向建立減碳措施資料庫。管理類措施在國內外皆占主要比例,尤其是資源/流程優化,其執行成本和困難度相對較低,可作為優先採用的目標。
本研究分析國內外營建業現有減碳措施,建立措施分類架構,整併措施的分布情形,建立減碳措施資料庫,使減碳措施有系統性,有助於使用者選取、採用。
Recent studies have proposed strategies and initiatives for energy conservation and carbon reduction. Companies have also adopted environmental initiatives and disclosed them in their sustainability reports in response to the energy conservation and carbon reduction trend. However, these initiatives lack systematic integration and are difficult to select, plan and adopt.
The objective of this research is to establish energy and emission reduction initiatives for the construction industry. It reviews 15 research studies and the sustainability reports of 10 domestic companies to identify their initiatives. Then, it develops a framework based on five life cycle stages and three dimensions: materials, technology, and management. After analyzing and integrating the initiatives, they are consolidated into the database.
The research results indicate that research initiatives are diverse and in-depth, covering both conceptual and practical implementations. Most focus on the material production stage and management initiatives of resource/process optimization. This indicates the need for improvements in material production and management processes in construction projects.
Domestic initiatives are relatively scattered and lack clear correlations. Most are related to construction sites and materials/equipment, indicating their effectiveness in these areas. The remaining initiatives are simpler and related to office operations.
By integrating 275 initiatives from both international and domestic sources, the database highlights management initiatives, especially resource/process optimization, as priority targets due to their lower cost and difficulty.
This study provides a systematic categorization framework and database, aiding users in selecting and adopting effective carbon reduction initiatives.
英文文獻
1. 117th Congress (2022). Clean Competition Act. https://www.congress.gov/bill/117th-congress/senate-bill/4355/text, accessed on Nov. 9, 2023.
2. Abolhasani, S., Frey, H. C., & Kim, K. (2008). “Real-World In-Use Activity, Fuel Use, and Emissions for Nonroad Construction Vehicles: A Case Study for Excavators.” Journal of the Air & Waste Management Association, Vol. 58, No. 8, pp. 1033-1046.
3. Ahmed Shaikh, F. U., Nath, P., & Hosan, A. (2019). “Sustainability assessment of recycled aggregates concrete mixes containing industrial by-products.” Materials Today Sustainability, Vol. 5, 100013.
4. Alaux, N., Ruschi Mendes Saade, M., & Passer, A. (2024). “Inventory regionalization of background data: Influence on building life cycle assessment and carbon reduction strategies.” Journal of Cleaner Production, Vol. 459, 142434.
5. Althoey, F., Ansari, W. S., Sufian, M., & Deifalla, A. F. (2023). “Advancements in low-carbon concrete as a construction material for the sustainable built environment.” Developments in the Built Environment, Vol. 16, 100284.
6. Angelina, C. (2022). Relationships between Environmental Initiatives and Performance for Construction Companies. National Cheng Kung University Master Thesis.
7. Barbhuiya, S. & Das, B. B. (2023). “Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making.” Case Studies in Construction Materials, Vol. 19. e02326.
8. Cho, S. H. & Chae, C. U. (2016). “A Study on Life Cycle CO2 Emissions of Low-Carbon Building in South Korea.” Sustainability, Vol. 8, No. 6, 579.
9. Climate Group (2017). RE100. https://www.theclimategroup.org/about_re100, accessed on Nov. 7, 2023.
10. Daft, R. L. (2007), Organization Theory and Design, Thomson South-Western. Mason, OH, USA.
11. Devaki, H. & Shanmugapriya, S. (2022). “LCA on Construction and Demolition Waste Management Approaches: A review.” Materials Today: Proceedings, Vol. 65, pp. 764-770.
12. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, pp. 86.
13. Drewniok, M. P., Azevedo, J. M.C., & Dunant, C. F. (2023). “Mapping material use and embodied carbon in UK construction.” Resources Conservation and Recycling, Vol. 197, 107056.
14. Eichhammer, W., Herbst, A., Pfaff, M., Fleiter, T., & Pfluger, B. (2018). Impact on the environment and the economy of technological innovations for the Innovation Fund (IF), Publication Office of the European Union., Luxembourg.
15. Epstein, M. J. & Roy, M. J. (2001). “Sustainability in Action: Identifying and Measuring the Key Performance Drivers.” Long Range Planning, Vol. 34, No. 5, pp.585-604.
16. Erlandsson, M. & Borg, M. (2003). “Generic LCA-methodology applicable for buildings, constructions and operation services—today practice and development needs.” Building and Environment, Vol. 38, No. 7, pp. 919-938.
17. EU (2021). European Green Deal: Commission proposes transformation of EU economy and society to meet climate ambitions. https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541, accessed on Nov. 8, 2023.
18. EU (2023). Green Deal. https://www.consilium.europa.eu/en/policies/green-deal/#initiatives, accessed on Nov. 8, 2023.
19. European Commission (2023). What is the EU ETS?, https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets/what-eu-ets_en, accessed on Nov. 9, 2023.
20. European Council (2022). Infographic - Fit for 55: making buildings in the EU greener. https://www.consilium.europa.eu/en/infographics/fit-for-55-making-buildin
gs-in-the-eu-greener/, accessed on Nov. 8, 2023.
21. European Council (2023). Infographic - Fit for 55: how does the EU intend to address the emissions outside of the EU? https://www.consilium.europa.eu/en/infographics/fit-for-55-cbam-carbon-border-adjustment-mechanism/, accessed on Nov. 8, 2023.
22. Fenner, A. E., Kibert, C. J., & Woo, J. (2018). “The carbon footprint of buildings: A review of methodologies and applications.” Renewable and Sustainable Energy Reviews, Vol. 94, pp.1142-1152.
23. Forest Service, (2021). Trees Are Climate Change, Carbon Storage Heroes. https://www.fs.usda.gov/features/trees-are-climate-change-carbon-storage-heroes, acessed on May 3, 2024.
24. Fu, C., Liu, Y. Q., & Shan, M. (2023). “Drivers of low-carbon practices in green supply chain management in construction industry: An empirical study in China.” Journal of Cleaner Production, Vol. 428, 139497.
25. Gade, A. N. & Selman, A. D. (2023). “Early implementation of the sustainable development goals in construction projects: A Danish case study.” Journal of Building Engineering, Vol. 79, 107815.
26. Gailani, A., Cooper, S., Allen, S., Pimm, A., Taylor, P., & Gross, R. (2024). “Assessing the potential of decarbonization options for industrial sectors.” Joule, Vol. 8, No. 3, pp.576-603.
27. Gauch, H. L., Dunant, C. F., Hawkins, W., & Cabrera Serrenho, A. (2023). “What really matters in multi-storey building design? A simultaneous sensitivity study of embodied carbon, construction cost, and operational energy. ” Applied Energy, Vol. 333, 120585.
28. Gauch, H. L., Hawkins, W., & Ibell, T. (2022). “Carbon vs. cost option mapping: A tool for improving early-stage design decisions.” Automation in Construction, Vol. 136, 104178.
29. Ge, Z., Geng, Y., Wei, W., Jiang, M., Chen, B., & Li, J. (2023). “Embodied carbon emissions induced by the construction of hydropower infrastructure in China.” Energy Policy, Vol. 173, 113404.
30. Gerilla, G. P., Teknomo, K., & Hokao, K. (2007). “An environmental assessment of wood and steel reinforced concrete housing construction.” Building and Environment, Vol. 42, No. 7, pp.2778-2784.
31. Global Reporting Initiative (GRI) (2008), A Snapshot of Sustainability Reporting in the Construction and Real Estate Sector, Boston, MA.
32. Global Reporting Initiative (GRI) (2022). Our mission and history, https://www.globalreporting.org/about-gri/mission-history/, accessed on Nov. 7, 2023.
33. Halpin, D. W., Senior, B. A., & Lucko, G. (2019), Construction Management (Asia Edition) (5 ed.), John Wiley.
34. Hong, J., Shen, G. Q., Feng, Y. (2015). “Greenhouse gas emissions during the construction phase of a building: a case study in China.” Journal of Cleaner Production, Vol. 103, pp.249-259.
35. Hsu, C. W., Chang, P. L., & Hsiung, C.M. (2011). “Construction and application of a performance assessment model for energy conservation and carbon reduction industries.” International Journal of Hydrogen Energy, Vol. 36., No. 21., pp. 14093-14102.
36. International Energy Agency (IEA) (2023), Reaching net zero emissions demands faster innovation, but we’ve already come a long way. https://www.iea.org/commentaries/reaching-net-zero-emissions-demands-faster-innovation-but-weve-already-come-a-long-way, accessed on Apr. 2nd, 2024.
37. International Energy Agency (IEA) (2024). Building Envelopes-Why is this important? https://www.iea.org/energy-system/buildings/building-envelopes, accessed on Feb. 17, 2024.
38. Kadefors, A., Lingegård, S., Uppenberg, S., Alkan-Olsson, J., & Balian, D. (2021), “Designing and implementing procurement requirements for carbon reduction in infrastructure construction – international overview and experiences.” Journal of Environmental Planning and Management, Vol. 64, No. 4, pp. 611-634.
39. Karlsson, I., Rootzén, J., & Johnsson, F. (2020). “Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project.” Renewable and Sustainable Energy Reviews, Vol. 120, 109651.
40. Kibert, C. (2005), Sustainable construction: green building design and delivery, Wiley.
41. Kwok, K. Y. G., Kim, J., Chong, W. K. O., & Ariaratnam, S. T. (2016). “Structuring a Comprehensive Carbon-Emission Framework for the Whole Lifecycle of Building.” Operation, and Construction. Journal of Architectural Engineering, Vol. 22, No. 3, 04016006.
42. Labaran, Y. H., Mathur, V. S., Muhammad, S. U., & Musa, A. A. (2022). “Carbon footprint management: A review of construction industry.” Cleaner Engineering and Technology, Vol. 9, 100531.
43. Lai, K. E., Rahiman, N. A., & Othman, N. (2023). “Quantification process of carbon emissions in the construction industry.” Energy and Buildings, Vol. 289, 113025.
44. Lai, S., Lu, J., & Luo, X. (2022). “Carbon emission evaluation model and carbon reduction strategies for newly urbanized areas.” Sustainable Production and Consumption, Vol. 31, pp.13-25.
45. Li, J. & Colombier, M. (2009). “Managing carbon emissions in China through building energy efficiency.” Journal of Environmental Management, Vol. 90, No. 8, pp.2436-2447.
46. Li, J., Liang, J., Zuo, J., & Guo, H. (2020). “Environmental impact assessment of mobile recycling of demolition waste in Shenzhen, China.”Journal of Cleaner Production, Vol. 263, 121371.
47. Li, W., Zhang, S., & Lu, C. (2022). “Exploration of China's net CO2 emissions evolutionary pathways by 2060 in the context of carbon neutrality.” Science of The Total Environment, Vol. 831, 154909.
48. Liu, N., Wang, Y., Bai, Q., Lui, Y., Wang, P., Xue, S., Yu, Q., & Li, Q. (2022). “Road life-cycle carbon dioxide emissions and emission reduction technologies: A review.” Journal of Traffic and Transportation Engineering, Vol. 9, pp.532-555.
49. Meng, Q., Hu, L., Li, M., & Qi, X. (2023). “Assessing the environmental impact of building life cycle: A carbon reduction strategy through innovative design, intelligent construction, and secondary utilization.” Developments in the Built Environment, Vol.16, 100230.
50. Ng, S. T., Wong, J. M. W., & Skitmore, S. (2012).” Carbon dioxide reduction in the building life cycle: a critical review.” Proceedings of the Institution of Civil Engineers - Engineering Sustainability, Vol. 165, No. 4, pp. 281-292.
51. Onat, N. C., Kucukvar, M., & Tatari, O. (2014). “Scope-based carbon footprint analysis of U.S. residential and commercial buildings: An input–output hybrid life cycle assessment approach.” Building and Environment, Vol. 72, pp.53-62.
52. Opoku, A., Deng, J., & Elmualim, A. (2022). “Sustainable procurement in construction and the realisation of the sustainable development goal (SDG) 12.” Journal of Cleaner Production, Vol.376, 134294.
53. Peuportier, B. L. P. (2001). “Life cycle assessment applied to the comparative evaluation of single family houses in the French context.” Energy and Buildings, Vol. 33, No. 5, pp. 443-450.
54. Rajabi, S., El-Sayegh, S., & Romdhane, L. (2022). “Identification and assessment of sustainability performance indicators for construction projects.” Environmental and Sustainability Indicators, Vol.15, 100193.
55. Raza, M. S., Tayeh, B. A., Abu Aisheh, Y. I., & Maglad, A. M. (2023). “Potential features of building information modeling (BIM) for application of project management knowledge areas in the construction industry.” Heliyon, Vol. 9, Issue 9, e19697.
56. RE100 (2014). RE100. https://www.there100.org/about-us, accessed on Nov. 7, 2023.
57. Rehfeldt, M., Worrell, E., Eichhammer, W., & Fleiter, T. (2020). “A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030.” Renewable and Sustainable Energy Reviews, Vol. 120, 109672.
58. Seraj, M., Parvez, M., Ahmad, S., & Khan, O. (2023). “Sustainable energy transition and decision-making for enhancing the performance of building equipment in diverse climatic conditions.” Green Technologies and Sustainability, Vol. 1., No. 3, 100043.
59. Sizirici, B., Fseha, Y., & Cho, C. S., (2021). “A Review of Carbon Footprint Reduction in Construction Industry”, from Design to Operation. Materials, Vol. 14, No. 20, 6094.
60. Sodagar, B. & Fieldson, R. (2008). “Towards a low carbon construction practice.” Construction Information Quarterly, Vol. 10, No. 3., pp. 101-108.
61. Swennenhuis, F., de Gooyert, V., & de Coninck, H. (2022). “Towards a CO2-neutral steel industry: Justice aspects of CO2 capture and storage, biomass- and green hydrogen-based emission reductions.” Energy Research & Social Science, Vol. 88, 102598.
62. Trivedi, S. S., Snehal, K., Das B. B., & Barbhuiya, S. (2023) “A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste” Construction and Building Materials, Vol. 393, 132125.
63. United Nations Environment programme (UNEP) (2022). 2022 Global Status Report for Buildings and Construction: Towards a Zero‑emission, Efficient and Resilient Buildings and Construction Sector. https://globalabc.org/sites/default/files/inline-files/202220Global20Status20Report20for20Buildings20and20Construction.pdf, accessed on Nov. 28, 2023.
64. Vasishta, T., Hashem Mehany, M., & Killingsworth, J. (2023). “Comparative life cycle assesment (LCA) and life cycle cost analysis (LCCA) of precast and cast–in–place buildings in United States.” Journal of Building Engineering, Vol. 67, 105921.
65. World Economic Forum (2022). This is the next hurdle in the construction industry's race to net-zero. https://www.weforum.org/agenda/2022/09/construction-industry-zero-emissions/, accessed on June 17, 2024.
66. World Green Building Council (2024). Bringing embodied carbon upfront. https://worldgbc.org/advancing-net-zero/embodied-carbon/, accessed on June 17, 2024.
67. Zhang, N., Zhang, D., & Zuo, J. (2022). “Potential for CO2 mitigation and economic benefits from accelerated carbonation of construction and demolition waste.” Renewable and Sustainable Energy Reviews, Vol. 169.
中文文獻
1. International Energy Agency (IEA) (2021),2050年净零排放全球能源部门路线图,https://www.iea.org/reports/net-zero-by-2050?language=zh,2023年12月6日上網資料。
2. 全國法規資料庫(民110),營建工程空氣污染防制設施管理辦法,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020058,2024年5月8日上網資料。
3. 全國法規資料庫(民112),氣候變遷因應法,https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098,2023年11月11日上網資料。
4. 全繹諺 (2023),高科技廠的環境措施及績效,國立成功大學碩士論文。
5. 易淳敏 (2023),「氣候變遷因應法三讀通過!2050淨零排放、碳費徵收重點一次看」,遠見雜誌,https://esg.gvm.com.tw/article/21200,2023年11月10日上網資料。
6. 金管會 (2022),金管會正式啟動「上市櫃公司永續發展路徑圖」,https://www.fsc.gov.tw/ch/home.jsp?id=1024&parentpath=0,2,310,2023年11月11日上網資料。
7. 金管會 (2023),上市櫃公司永續發展行動方案(2023年),https://www.fsc.gov.tw/uploaddowndoc?file=news/202303290815110.pdf&filedisplay=E4B88AE5B882E6AB83E585ACE58FB8E6B0B8E7BA8CE799BCE5B195E8A18CE58B95E696B9E6A188.pdf&flag=doc,2023年10月30日上網資料。
8. 英國標準協會(2014),PAS 2060碳中和,https://www.bsigroup.com/zh-TW/PAS-2060-Carbon-Neutral/,2023年12月5日上網資料。
9. 英國標準協會(2022),ISO 14064 溫室氣體排放查證/確證,https://www.bsigroup.com/zh-TW/ISO-14064-Greenhouse-Gas-Emissions/,2023年12月5日上網資料。
10. 國發會 (2022),臺灣2050淨零排放路徑及策略總說明, https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76#,2023年11月5日上網資料。
11. 張行道(民112),「工程碳足跡與減碳策略」,綠道路推廣說明會(台北場) ,台北市政府,12月1日。
12. 張行道、蔡雅雯、李梓暘、徐士哲(2010),「工程顧問公司永續設計環境面項目與指標之建立」,台灣世曦工程顧問股份有限公司研究報告,計畫編號99940。
13. 陳育晟 (2024),「日本排碳量創新低!達成2030減碳目標為何這麼難?」,遠見雜誌,2024年6月20日上網資料。
14. 陳宥任(2022),建設公司永續報告書重大主題與環境指標揭露分析,國立成功大學碩士論文。
15. 陳彥豪 (2023),碳盤查資料品質評估 ,國立成功大學碩士論文。
16. 技師報(2024),「淨零碳排趨勢將為工程界創造新藍海市場」,臺灣省土木技師公會,第1436期。
17. 環保署 (2022),溫室氣體排放量盤查作業指引(2022.05)-final,https://ghgregistry.moenv.gov.tw/epa_ghg/GhgDownload/E6BAABE5AEA4E6B0A3E9AB94E68E92E694BEE9878FE79BA4E69FA5E4BD9CE6A5ADE68C87E5BC95(2022.05)-final.pdf,2023年11月11日上網資料。
18. 環境資訊中心 (2023),《氣候變遷因應法》三讀過關 碳費即將開徵 重點整理一次看, https://e-info.org.tw/node/235882,2023年11月10日上網資料。
永續報告書
1. 國泰建設股份有限公司(2022),2021年永續報告書,http://cathayred-csr.com/upload/medias/2021CATHAYREDCSR.pdf,2023年7月16號上網資料。
2. 冠德建設股份有限公司 (2022),2021年永續報告書,https://csrone.com/reports/5701,2023年7月16號上網資料。
3. 日勝生生活科技股份有限公司(2022),2021年永續報告書,https://www.radium.com.tw/files/uploads/%E6%97%A5%E5%8B%9D%E7%94%9F2021CSR_C6%20_N1.pdf,2023年7月16號上網資料。
4. 國揚建設有限公司(2022),2021年永續報告書,https://www.kycc.com.tw/csr/pdf/2021%E5%9C%8B%E6%8F%9A%E6%B0%B8%E7%BA%8C%E5%A0%B1%E5%91%8A%E6%9B%B8.pdf,2023年7月16號上網資料。
5. 遠雄建設事業股份有限公司(2022),2021年永續報告書,https://fgfileshareing.blob.core.windows.net/landbox/20220808_%E9%81%A0%E9%9B%84%E6%B0%B8%E7%BA%8C%E5%A0%B1%E5%91%8A%E6%9B%B8_link.pdf,2023年7月16號上網資料。
6. 根基營造股份有限公司(2022),2021年永續報告書,https://esg.kedge.com.tw/wp-content/uploads/2023/08/KEDGE2021ESGREPORT.pdf,2023年7月16號上網資料。
7. 達欣工程股份有限公司 (2022),2021年永續報告書,https://www.dacin.com.tw/csr/download.php,2023年7月16號上網資料。
8. 建國工程股份有限公司(2022),2021年永續報告書,http://www.ckgroup.com.tw/upload/2022-10-27/2021%20%E4%BC%81%E6%A5%AD%E6%B0%B8%E7%BA%8C%E5%A0%B1%E5%91%8A%E6%9B%B8.pdf,2023年7月16號上網資料。
9. 德昌營造股份有限公司(2022),2021年永續報告書,https://www.tccon.com.tw/doc/2021ESG.pdf,2023年7月16號上網資料。
10. 工信工程股份有限公司(2022),2021年永續報告書,https://www.kseco.com.tw/upload/17/2022062216104533712.pdf,2023年7月16號上網資料。
校內:2026-08-01公開