| 研究生: |
楊佳曄 Yang, Chia-Ye |
|---|---|
| 論文名稱: |
建置餐飲油煙PM2.5指紋資料以探討餐飲活動對周界PM2.5之貢獻比例 Estimation of the contribution of cooking activities to ambient PM2.5 concentration by establishing the PM2.5 source profile of cooking smoke |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 餐飲油煙 、脂肪酸 、化學質量平衡模式 |
| 外文關鍵詞: | cooking smoke, fatty acids, CMB model |
| 相關次數: | 點閱:101 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
餐飲油煙是一項只要有人類活動,就會產生之污染物,餐飲油煙中含有上千種化合物,包括氣狀及粒狀污染物,PM2.5就是其中的一個項目。台灣過去針對細懸浮微粒之相關研究中,針對指紋資料方面之研究較少,且指紋中對於有機碳成分組成較為缺乏,本研究針對台灣餐飲業進行採樣以建置指紋,以及彙整國外各種污染源指紋資料進行餐飲業油煙對台灣PM2.5貢獻量之推估。
本研究之餐飲業油煙依烹調方式不同分為四類,分別為炸類、烤類、煎類與炒類,不同烹調方式有不同之用油量、油溫、食材及食用油種類等等,因而可能造成指紋資料之差異。餐飲油煙之採樣使用旋風分離器(Cyclone),為分析有機碳與元素碳成分,採樣濾紙皆使用石英濾紙。採樣設備架設於各採樣地點之油煙排氣口,使旋風分離器進氣口與廢氣排出方向平行,利用抽氣泵抽氣,藉由旋風分離器去除直徑大於2.5m之懸浮微粒,並以石英濾紙收集。
本研究除了餐飲業油煙採樣分析結果外,亦參考國外文獻以及美國Speciate資料庫,挑選出各污染源資料中,含有機成分之指紋資料,建置本研究使用之指紋資料。
周界PM2.5之採樣地點位於台南東區成功大學卓群大樓與台南中西區中山國中,同樣使用旋風分離器進行採樣,採樣設備架設於各測站之頂樓,採樣濾紙使用鐵氟龍濾紙以及石英濾紙,使用定時器設定各時段開始抽氣與關閉抽氣之時間。
研究結果,餐飲業油煙細懸浮微粒之有機碳成分佔大部分之比例67.7%~72.3%,無機碳成分之佔比僅佔0.3%~0.9%。炸類之脂肪酸對於碳成分之解析率最高約54%,最低是炒類之10%。各類之脂肪酸比例略有不同,炸類最主要成分為棕櫚酸,其次為油酸與亞油酸;烤類主要為棕櫚酸,其次為油酸與硬脂酸;煎類與炒類之主要脂肪酸為油酸,其次為棕櫚酸及亞油酸。膽固醇碳質量佔有機碳質量,比例大小排序為烤類最高,佔比0.7%,煎類略低,佔比0.5%,炒類較低僅0.1%,炸類則不足0.1%。
總脂肪酸碳重佔總碳比例,卓群大樓與中山國中皆以中午最高,比例分別為2.0%與5.3%,成大卓群大樓呈現深夜與早上較高,分別為1.2%與1.1%,最低為晚上之0.6%;中山國中則呈現早上與晚上較高,分別為3.9%與4.8%。
使用CMB模式進行貢獻比例之模擬結果,餐飲業對總碳之平均貢獻比例在不同地點與時段有所差異,成大卓群大樓為中午25%、早上3%、晚上2%、深夜2%;中山國中中午時段最高為50%,晚上其次為48%,早上為29%,而深夜時段僅3%。
Cooking smoke contains thousands of compounds, including gas and particulate contaminants. In the past, there are few studies on the source profiles of fine particles, and the composition of organic carbon is relatively lacking. In this study, cooking smoke of several restaurants are sampled to establishing the PM2.5 source profiles of cooking smoke.
Restaurants are divided into four categories according to different cooking methods, namely, deep frying, pan frying, stir frying, and broiling. Cyclones and 1/8 horse power pumps are used for sampling cooking smoke fine particles. For the analysis of organic carbon and element carbon composition, fine particles are collected by quartz filters. Besides the cooking smoke PM2.5 source profiles, this study collects the source profiles of other sources from literatures and Speciate database for Chemical Mass Balance modeling. To estimate the contribution of cooking activities to ambient fine particles, two monitoring sites are set up in Tainan.
The result shows that the proportion of organic carbon in the fine particles of cooking smoke is 67.7%~72.3%, but the proportion of element carbon in the fine particles of cooking smoke is less than 1%. Fatty acids account for about 54% of total carbon content for deep frying but only 10% for stir frying.
The result of Chemical Mass Balance modeling shows that the contribution of cooking activities is highest at noon and lowest at night and in both monitoring sites.
Buonanno G., G. Johnson, L. Morawska, L. Stabile. Volatility characterization of cooking-generated aerosol particles. Aerosol Science and Technology. 45:1069-1077. 2011.
Calvert J.G., W.R. Stockwell. Acid generation in the troposphere by gas-phase chemistry. Environmental Science and Technology. 17:428-443. 1983.
Dong J., W. Chen, S. Wang, J. Zhang, H. Li, H. Guo, Y. Man, B. Chen. Jones oxidation and high performance liquid chromatographic analysis of cholesterol in biological samples. Journal of Chromatography B. 858:239–246. 2007.
Funazo K., M. Tanaka, Y. Yasaka, H. Takigawa, T. Shono. New Ultraviolet Labelling Agents for High-Performance Liquid Chromatographic Determination of Monocarboxylic Acids. J. Chromatogr. 481:211. 1989.
Hays M. D., P. M. Fine, C. D. Geron, M. J. Kleeman, B. K. Gullett. Open burning of agricultural biomass: Physicaland chemical properties of particle-phase emissions. Atmospheric Environment. 39:6747–6764. 2005.
He L. Y., M. Hu, X. F. Huang, B. D. Yu, Y. H. Zhang, D. Q. Liu. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment. 38:6557–6564. 2004.
Kim K.H., S.K. Pandey, E. Kabir, J. Susaya, R. J. C. Brown. The modern paradox of unregulated cooking activities and indoor air quality. Journal of Hazardous Materials. 195:1-10. 2011.
Levy J. I., T. Dumyahn, J.D. Spengler. Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. Journal of Exposure Analysis and Environmental Epidemiology. 12:104-114. 2002.
McDonald J.D., B. Zielinska, E.M. Fujita, J.C. Sagebiel, J.C. Chow, J.G. Watson. Emissions from charbroiling and grilling of chicken and beef. Journal of the Air & Waste Management Association. 53:185-194. 2003.
Mehta A., A.M. Oeser, M.G. Carlson. Rapid quantitation of free acids in human plasma by high-performance liquid chromatography. Journal of Chromatography B. 719:9-23. 1998.
Nolte C.G., J.J. Schauer, G.R. Cass, B.R.T. Simoneit. Highly polar organic compounds present in meat smoke. Environmental Science & Technology. 33:3313-3316. 1999.
Rioux V., D. Catherine, M. Bouriel, P. Legrand. High performance liquid chromatography of fatty acids as naphthacyl derivatives. Analusis 27:186. 1999.
Rogge W. F., L. M. Hildemann,M. A. Marurek, and G. R. Cass. Sources of Fine Organic Aerosol. 1. Charbroilers and Meat Cooking Operations. Environ. Sci. Technol. 25:1112-1125. 1991.
Rogge W.F., L.M. Hildemann, M.A. Mazurek, G.R. Cass, B.R.T Simoneit. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environmental Science & Technology 27, 2700-2711. 1993.
Rogge W.F., L.M. Hildemann, M.A. Mazurek, G.R. Cass, B.R.T. Simoneit. 1997. Sources of fine organic aerosol. 8. Boilers burning No. 2 distillate fuel oil. Environmental Science & Technology. 31:2731-2737.
Rogge W. F., L. M. Hlldemann, M. A. Marurek, and G. R. Cass. Sources of Fine Organic Aerosol. 2. Noncatalyst and Catalyst-Equipped Automobiles and Heavy-Duty Diesel Trucks. Environ. Sci. Technol. 27:636-651. 1993.
Rogge W. F., L. M. Hlldemann, M. A. Marurek, and G. R. Cass. Sources of Fine Organic Aerosol. 3. Road Dust, Tire Debris, and Organometallic Brake Lining Dust: Roads as Sources and Sinks. Environ. Sci. Technol. 27:1892-1904. 1993.
See S.W., S. Karthikeyana, R. Balasubramanian. Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. Journal of Environmental Monitoring. 8:369-376. 2006.
See S.W., R. Balasubramanian. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment. 42:8852-8862. 2008.
Seinfeld, J. H., and Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley, New York. 1998.
Schauer J. J., M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit. Measurement of Emissions from Air Pollution Sources. 4. C1-C27 Organic Compounds from Cooking with Seed Oils. Environ. Sci. Technol. 36:567-575. 2002.
Schauer J. J.,M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit. Measurement of Emissions from Air Pollution Sources. 1. C1 through C29 Organic Compounds from Meat Charbroiling. Environ. Sci. Technol. 33:1566-1577. 1999.
Siegmann K., K. Sattler. Aerosol from hot cooking oil, a possible health hazard. Journal of Aerosol Science. 27:S493-S494. 1996.
Simoneit B.R.T., J.J. Schauer, C.G. Nolte, D.R. Oros, V.O. Elias, M.P. Fraser, W.F. Rogge, G.R. Cass. Levoglucosan, a trace for cellulose in biomass burning. Atmospheric Environment. 33:173-182. 1999.
Schauer J. J., M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit. Measurement of Emissions from Air Pollution Sources. 3. C1-C29 Organic Compounds from Fireplace Combustion of Wood. Environ. Sci. Technol. 35:1716-1728. 2001.
Tarola A.M., A.M. Girelli, and S. Lorusso. High Performance Liquid Chromatography Determination of Fatty Acids in Drying Oils Following Lipase Action. Journal of Chromatographic Science. 50:294–300. 2012.
Wang G., S. Cheng, W. Wei, W. Wen, X. Wang, S. Yao. Chemical Characteristics of Fine Particles Emitted from Different Chinese Cooking Styles. Aerosol and Air Quality Research. 15:2357–2366. 2015.
Watson J. G., Visibility: Science and Regulation. Journal of the Air & Waste Management Association. 52:628-713. 2002.
Wood R. and T. LEE. 1983. High-performance liquid chromatography of fatty acids: quantative analysis of saturated, monoenoic, polyenoic and geometrical isomers. Journal of Chromatography. 254:237-246. 1983.
Yasaka Y., M. Tanaka, T. Shono, T. Tetsumi, J. Katakawa. 2-(2,3-Naphthalimino)ethyl trifluoromethanesulphonate as a highly reactive ultraviolet and fluorescent labelling agent for the liquid chromatographic determination of carboxylic acids. J. Chromatogr. 508:133. 1990.
Yeung, L. L., W. M. To. Size distributions of the aerosols emitted from commercial cooking processes. Indoor and Built Environment. 17:220-229. 2008.
Zhu L., J. Wang. Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere. 50:611-618. 2003.
USEPA,AP-42 (APPENDIX C.1) “Procedures For Sampling Surface/Bulk Dust Loading,” USEPA
李建宏、葛應欽,室內空氣污染因子與台灣不吸菸婦女肺癌之研究,高雄醫學大學醫學研究所博士論文,2000
吳姿樺、蔡春進,一個員工餐廳的靜電除油煙機的控制效率,國立交通大學工學院永續環境科技學程碩士論文,2009