| 研究生: |
黃祐泰 Huang, U-Tai |
|---|---|
| 論文名稱: |
雙胴遙控載具避碰及視窗化導航控制系統之研究 Study on Collision Avoidance Mechanism and Window Based Navigation/Control system of Catamaran Type RCV |
| 指導教授: |
顏沛華
Yen, Pei-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 遙控載具 、避碰 、視窗化 |
| 外文關鍵詞: | Catamaran Type RCV, Collision Avoidance, Window Based Navigation/Control System |
| 相關次數: | 點閱:154 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區山高水急,年降雨量看似頗豐,然蓄水不易,不若一般大陸型地域條件,雨水降落地表即急促入海,因此水庫蓄水在台灣本島之重要性不言可喻,而掌握水庫之蓄水狀況與有效之供水調配更是主管機關的重要任務,水庫淤積測量也因此成為重要課題。惟辦理水庫淤積測量計畫規模龐大,常無法於急需時隨即辦理。爰此,國立成功大學水利及海洋工程學系河海現場調查實驗室根據多年水庫淤積調查之實務經驗,著手研發無人雙胴遙控載具,希望藉由自動化操作之平台能局部替代傳統人工化之水庫淤積測量操作,針對水庫管理單位所轄之水庫可隨時作有效運用,於水庫放水口或發電廠進水口…等重要水域能作快速簡潔之自動化量測,可使管理單位在颱風、大雨過後,立即得知特定區域之淤積狀態。
本實驗室先前已研發完成雙胴遙控載具平台,本研究之重點在於延伸該系列之自動化功能,即在遙控載具上建置避碰與視窗化導控系統,期能使遙控載具功能更臻完備。一般水庫管理單位其淤積或蓄水量調查均以滿水位為規劃調查範圍,大斷面樁設在陸上,測線通常涵蓋小部份陸上範圍,而水庫淤積或蓄水量調查施測時機又多選定於低水位時期,故本研究之避碰系統能自動偵測邊界,在靠近水陸交界時自動切換至下一條測線繼續執行工作,免除操作人員在規劃現場作業時須考量水位高低之時變性困擾。
本研究以南化水庫為現場實驗地點,在雙胴遙控載具上建置避碰系統與視窗化導控系統後,於現場規劃一V字型測線實際測試其性能與工作能力。避碰系統包含雷射測距儀模組與安全壓條模組,能偵測前方障礙物或在觸及障礙物時能作有效反應,視窗化導航控制系統則由Visual Basic程式語言撰寫而成,負責接收、計算、導控與記錄遙控載具之航向、位置、坐標、水深等所有儀器蒐錄之資料。
根據現場試驗結果顯示,本研究所建置於雙胴遙控載具之避碰系統與視窗化導控系統均能有效運作,達成原先規劃之目的。實驗過程分別針對雷射測距儀模組與安全壓條模組作實際測試:雷射測距儀模組係將警戒值調整為15公尺,只要雷射測距儀偵測到距離小於15公尺之障礙物,避碰系統隨即發揮作用。另當雙胴遙控載具駛近陸岸時,安全壓條模組碰觸到陸岸邊坡時將造成安全壓條迴路短路,視窗化導航控制系統偵測到上述雷射測距儀模組之警戒值或安全壓條模組之短路訊號後,隨即切換測線,此時前後兩組推進器與雷射測距儀隨即掉頭切換方向,雙胴遙控載具遂往下一條測線航行。經由本實驗之驗證,視窗化導控系統可作為遙控載具之核心控制系統,除能發揮避碰、導控功能外,亦具備數據傳輸、接收、計算與記錄之強大能力,未來將配合周邊各類系統之陸續建置,能使雙胴遙控載具有朝一日達到水庫淤積調查完整之現場工作能力。
Annual rainfall looks abundant but hardly stored in earth because of the high hill mountains and steep slope streams in Taiwan. The rain is pouring down the earth surface then rush to the sea which is different from the behaviors of overland flow in continental terrain and the importance of reservoirs storage is quite obviously in the public supply. To administer the reservoir storage information and to allocate the water supplies effectively become priority missions of reservoir authorities so as to the field surveying which could provide the relative sediment information. Because of the large scale open water in reservoir, field surveying tasks were unable to execute at any time while in the critical conditions of needing the storage/deposit information. A twin hull catamaran type RCV (Remote Control Vehicle) has been developed by River and Ocean Field Survey Laboratory of Hydraulic and Ocean Eng’g Department, National Cheng Kung University to meet the requirement of surveying at all time. The RCV can partially replace the traditional artificial surveying task by automatic operation and provide the specific data as soon as possible to the authorities in dominant region such as the silting conditions nearby the reservoir outlet or water intake of the power plant etc. after the serious typhoon attack or heavy storm rainfall.
The twin hull catamaran type RCV has been set up years before and the focal point of this research lies in extending the automatic function. A collision avoidance and windows-based navigation control system were established in the RCV to enhance the decision function. Relative water resources/reservoir authorities usually need the critical storage/deposit information in fulfilled storage of high level condition and prefer to carry out the field surveying in low level season. Most of surveying section stakes of reservoir has the site on land and the RCV was designed to have the water-land interface detecting mechanism by this collision avoidance system operation while the RCV followed the stakes section course to navigate. When the RCV navigate nearby the water-land interface, the collision avoidance system would be actuated to change the course and navigate to the next surveying section and hence get rid of unnecessary time variation consideration of high/low levels in planning the reservoir field surveying.
Field experiment of this research was carried out in Nan-Hua reservoir. The RCV set up the collision avoidance and windows-based navigation control system to test its performance and ability while it navigates along a planning V shape route. The collision avoidance system includes a laser range finder module and a safety strip module which could detect/touch the forward obstacles and make a valid response. The windows-based navigate control system designed by Visual Basic was responsible for data acquisition/calculating, RCV navigating/guiding and monitoring all field experiment data such as heading, position, coordinates and water depth etc. during the RCV performed in reservoir.
The field test results demonstrated that the collision avoidance and windows-based navigation control system performed quite efficiently. The laser range finder module and safety strips module was inspected the function respectively. The threshold warning range of 15 meters was input in the laser range finder module and the collision avoidance system would be actuated when the distance between obstacles and the RCV was less then 15 meters. A short circuit condition occurred as soon as the safety strips module touches the water-land interface while the RCV close to the surveying section bank. The RCV would change the course and heading to the next surveying section with forward/rear propellers and the laser range finder module turned around simultaneously while the response signal of the collision avoidance system were detected by the windows-based navigation control system. This up-to-date navigation control system proposed in this paper can be regarded as the kernel system of the twin hull catamaran type RCV and posses the function of collision avoidance and navigation control. Data acquisition and computing, signal transmission and recording abilities were included in this windows-based system as well. Cooperate with the relative peripheral equipments will enable the RCV to reach the fully performing ability in reservoir sedimentation survey in the future.
1. M.H.E. Larcommbe,“Tracking stability of wire guided vehicle”,in proc. Int. Conf. Auto. Guided vehicle System, pp. 137-144, June.1981.
2. T. Tsumura, Survey of automated guided vehicle in Japanese factory”,in Proc. IEEE Int. Conf. on Robotics and Automation, pp.1329-1334, 1986.
3. K .C. Drake, E. S. McVey, and R. M. Inigo,“Sensing error for a mobile robot using line navigation”,IEEE Trans. Rat tern Anal. Machine. vol. PAMI-7, pp.485-490, July. 1985.
4. E. S. McVey, K. C. Drake, and R. M. Inigo, angle measurements by a mobile robot using navigation line”,IEEE Trans. Pattern Anal. Machine Intelligence, vol. PAMI-8, pp.105-109, Jan. 1986.
5. C. Thrope, M. H. Hebert, T. Kanade, and S. Shafer,” Vision and naviga -tion for Carnegin-Mellon NAVLAB”,IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.10, pp.362-373, May.1989.
6. N. A. Turk, D. G. Morgenthaler, K. D. Germvban, and M. Marra, “VITS a vision system for autonomous land vehicle navigation”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.10, no.3, pp.342-361, 1988.
7. R. L. Madarasz, L. C. Heiny, R. F. cromp, and H. M. Mazur, “The design of an autonomous land vehicle for the disabled ”,IEEE Journal of robotics and Automation" Vol. RA-2, pp.117-126, Sept. 1986.
8. I. J. Cox, “Blanche-an experiment in guidance and navigation of an autonomous robot vehicle”, IEEE Transactions on Robotics and Automation, Vol. 7, pp. 193-204, April. 1991.
9. I. J. Cox, “Blanche-an autonomous robot vehicle for structured environ -ments”, Proc. IEEE Int. Conf. on Robotics and Automation, Philadelphia, Pa., U.S.A., pp.978-982, 1988.
10. M. Yachida, T. Ichinose, and S. Tsuji, “Model-guided monitoring of a building environment by a mobile robot”, Proc. int. Joint Conf. on Robotics and Automation, Karlsruhe, west Germany, pp.1125-1127, Aug. 1983.
11. S. D. Cheng and W. H. Tsai, “Model-based guidance of autonomous land vehicle in indoor environments by structure light using vertical line information”, science, National Chiao Tung University, Hsinchu, Taiwan, 30050, R.O.C., 1991.
12. Milner, P. H. “Underwater Engineering Surveys ” ,Gulf publishing Company, Book Division, P.O.Box 2608
13. Ingham, A.E. “Sea Surveying”, John Wiley & Sons, 1975.
14. J. Borenstein and Y.Koren, “Real-time obstacle avoidance for fast mo- bile robots” IEEE Trans. on System, Man, and Cybernetics. vol.19, pp.1179-1187, Sep. / Oct. 1989.
15. J. P. H. Steel and G. P. Starr, “Mobile robot path planning in dynamic environments” in Proc. IEEE Int. Conf. System, Man and Cybernetics. (Beijing and Shenyang, China), 1988.
16. K. T. Chang and W. H. Tsai, “Collision Avoidance for Autonomous Land Vehicle navigation in Indoor Environment by Laser Light projection”, Master 's thesis, Institute of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, 30050, R.O.C., 1991.
17. Z-XtremeTM Technical Reference Manual ,Ashtech,U.S.A.,2001。
18. Motion Macros Quick Basic 4.0* MKT 711,The Superior Electric company。
19. 顏沛華、李友平(1990),“遙控載具應用於水庫淤砂之量測(Ⅰ)~步進馬達控制硬體製造與程式發展”,國科會大學生暑期參與專題研究計畫報告,計畫編號79006-055,民國79年12月。
20. 顏沛華、高家俊(1991),“遙控載具應用於水庫淤砂之量測(Ⅰ) ”,國科會研究計畫報告,計畫編號NSC79-0410-E006-31,民國80年4月。
21. 顏沛華、高家俊(1991),“遙控載具應用於水庫淤砂之量測(Ⅱ) ”,國科會研究計畫報告,計畫編號NSC80-0410-E006-22,民國80年12月。
22. 顏沛華、高家俊(1992),“遙控載具應用於水庫淤砂之量測(Ⅲ) ”,國科會研究計畫報告,計畫編號NSC81-0410-E006-39,民國81年9月。
23. 李友平(1992),“應用於水庫淤砂量之遙控載具導引及偵測系統模擬” ,成功大學碩士論文,顏沛華指導,民國81年5月。
24. 黃金山(1982),“水庫防淤規劃研究(感恩水庫防淤研究) ” ,台灣省水利局71年度研究發展研究報告,民國71年6月。
25. 李建寬(1992),“GPS衛星汽車自動帶路系統之定位研究”,成功大學航測所碩士論文,台南,1992。
26. 涂昆源(1996),“全球定位系統在無人船導控之應用”,台灣大學電機所碩士論文,台北,1996。
27. 顏沛華 (1998),“現場調查水文資訊之有線/無線整合數據傳輸之實作研究(II)”, 國科會NSC87-2512-S-006-021-EE計畫研究報告,台南。
28. 蔡長泰、王文江…等(1998),「水庫清淤之研究(三)」,經濟部水資源局87EC2B3C0040報告,國立成功大學水利及海洋工程系、美國Multech Engineering Consultants公司、成大環境研究中心,中華民國87年6月,p2-31。
29. 張逸中等(1998), “以聲納束寬概念為基礎的測深資料處理”,港灣技術,第十三卷,59-71頁。
30. 黃正文(1999),“全球衛星定位系統(GPS)在水庫淤積測量之應用與規範之研擬”成功大學水研所碩士論文,顏沛華指導,台南,1999。
31. 張功武(1999),“單音束測深之技術品管與流程品管”中山大學海環研究所碩士論文,薛憲文指導,高雄,1999。
32. 林建忠(1999),“雷射測距技術與研究現況”,光連雙月刊,19期,財團法人光電科技工業協進會,1999。
33. 黃家琦(2000),“卡門濾波應用於水庫淤積測量遙控載具之導控模擬”成功大學水研所碩士論文,顏沛華指導,台南,2000。
34. 顏沛華、李友平、黃正文、黃家琦(2000),“應用自動導航之遙控載具測量水庫淤積量~以台灣白河水庫為例”,第三屆兩岸測繪發展/測繪與可持續發展研討會,pp365~373,香港,2000。
35. 史天元(2000),“平面測量雷射測距儀器”,土木水利,27(2):93-98
36. 黃堃洋(2000),“開框架式無人小艇之設計、動態分析與控制”,國立中山大學機械工程研究所碩士論文,程啟正指導,高雄,民國89年6月。
37. 古碧源、陳崇儒、郭育瑋、伊遠慶、林坤政(2001), “無人載具在陸域水體量測之應用” ,第二十三屆海洋工程研討會論文集,pp 608~615頁,2001。
38. 范逸之、陳立元(2001),“Visual Basic與RS232串列通訊控制最新版”,文魁資訊,台北,2001。
39. 顏沛華、蘇南霖(2002),“GPS RTK作業無線數據傳輸效率問題探討”,第五屆GPS衛星科技研討會,pp219~225,台北,2002。
40. 陳明欽(2002),“淺水多音束聲納測深資料的誤差分析研究”臺灣大學海洋研究所碩士論文,宋國士指導,台北,2002。
41. 顏沛華(2002),“水庫容量及淤積測量之研究”,經濟部水資源局,pp附6-0~附6-157,台北,中華民國91年3月。
42. 游武璋、黃志方、成維華、高崇洋(2002),“工業用機器人安全防護系統與乙太網路之整合應用與探討”,勞工安全衛生研究季刊,第十卷第三期,民國91年9月,pp 218~231頁。
43. 邱永龍(2002),“特用服務自走車之模糊反應導航與混合導航”,國立中興大學電機工程研究所碩士論文,蔡清池指導,台中,民國91年6月。
44. 李信德(2003),“模型船航路追蹤自航器之探討”,國立台灣海洋大學導航與通訊所碩士論文,曾慶耀指導,基隆,2003。
45. 戴寬正(2003),“船舶監控與導航系統”,國立台灣海洋大學導航與通訊所碩士論文,張淑淨指導,基隆,2003。
46. 王仁祥(2003),“類神經-模糊避碰系統與適應模糊-H∞操舵器之綜合設計”,國立成功大學造船暨船舶機械工程研究所碩士論文,黃正能指導,台南,民國92年6月。
47. 顧高至(2003),“智慧型多功能自走車之研發”,國立成功大學工程科學所碩士論文,周榮華指導,台南,民國92年6月。
48. 蘇俊源(2004),“應用GPS導航機制雙胴載具之研發”,國立成功大學水利及海洋工程研究所碩士論文,顏沛華指導,台南,2004。
49. 古頤榛(2004),“Visual Basic 6中文版教學手冊(第二版)”,碁峰資訊,台北,2004。