| 研究生: |
劉俊成 Liu, Chun-Chen |
|---|---|
| 論文名稱: |
QFP 封裝體之散熱與信賴性能力提升 Thermal and Reliable Capability Enhancement In QFP Package |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | QFP 、分層 、熱阻 、散熱片 、TIM |
| 外文關鍵詞: | Delamination, Thermal Resistance, Heat Spreader, TIM, QFP |
| 相關次數: | 點閱:140 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著終端市場的需求,晶片的功能設計與輸出的功率日亦強大,這代表電子封裝的密度會不斷的升高,相對的單位體積內所產生的熱量會越來越大,當晶片的工作溫度超過所設計的溫度時會造成部分的功能失效,嚴重的會使整個晶片燒毀沒有辦法繼續工作;這樣的趨勢會為封裝結構的散熱與信賴性能力帶來嚴峻的考驗。
本文利用QFP (Quad Flat Package)封裝結構體搭配外露式散熱片在不改變現行封裝製程下修改封裝體內部散熱片的結構以達到封裝體散熱與信賴性能力的提升;本研究分成三個主題來做探討:(1) 降低封裝體內部材料間分層的問題,增加材料間的結合性;(2) 降低封裝結構對外部環境的熱阻值,利用TIM ( Thermal Interface Material ) 材料取代封裝結構體內空氣的介層;(3) 延伸TIM材料的應用,利用不同的TIM材料種類與TIM材料的厚度來做熱阻值能力的交叉比對。
本研究結果發現,降低內部材料間分層的問題為首要關鍵,分層即代表封裝體內部材料間有空氣存在,這是造成封裝體內部熱阻值升高的主要問題;TIM材料的應用可以降低封裝結構內部分層問題的產生增加結構信賴性能力,在材料厚度上的差異為越薄對於封裝體熱阻的降低有著正向的關係,在不同種類的TIM材料會有著介面熱阻的問題產生出來。
To follow the terminal market requirement, the function and efficiency demands of chips increase. This causes high density electronic packaging, which raises the heat dissipation. If the chip working temperature is over the design limit, it results in the function failure and the chip burnout. This trend will bring severe challenge to the packaging reliability and heat dissipation ability.
In this work, the assembly structure includes Quad Flat Package (QFP) and an exposed type heat slug. Only the heat slug structure is modified and no other change is made in the assembly process. This modification is expected to enhance the thermal and reliable capability. There are three subjects in this study: (1) reduce the delamination problem by increasing the adhesion between materials; (2) reduce the thermal resistance in the packaging structure by using the thermal interface material (TIM) to avoid the formation of air gap in the structure;(3) analyze the TIM effects on the thermal resistance for different TIM materials and thicknesses.
From the study results, it can be found that the delamination is the key problem, which means there exists air gap. This results in the increase of thermal resistance. Appropriate TIM applied to the heat slug structure can enhance material interface adhesion and reduce the delamination risk in the assembly process. This could decrease the thermal resistance and enhance the reliable capability. However, it should be noted that the application of TIM could induce extra interfacial thermal resistances.
[1]陳信文、陳立軒、林永森與陳志銘譯, R. R. Tummala著 “微系統構裝基礎原理,” 高立圖書, 2002/12初版.
[2]Laurene Yip, “Moisture sensitivity and reliability of plastic thermally enhanced QFP packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology B, VOL. 18, NO. 3, AUGUST 1995
[3]Darvin R. Edwards, Ming Hwang, and Bill Steams, “Thermal enhancement of plastic IC packages ,” IEEE Transactions on Components, Packaging, and Manufacturing Technology A, VOL. 18, NO. 1. MARCH 1995
[4]Rick H.N. Chen, “Gap effect of package with heat spreader on the thermal,” Thermal Characterization Laboratory ASE, Dec. 1997 .
[5]S. Liu and Y. Mei, “Behavior of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption, and wave soldering,” IEEE Transactions on Components, Packaging, and Manufacturing Technology A, vol. 18, no. 3, pp. 634–645, Sep. 1995.
[6]Yi-Shao Lai, Yi-Hsien Lin, and Jenq-Dah Wu, “Prediction of gap in QFP with unattached heat spreader ,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, VOL. 28, NO. 1, MARCH 2005
[7]B.A. Zahn and R.P. Stout, “Evaluation of isothermal and isoflux natural convection coefficient correlations for utilization in electronic package level thermal analysis,” Proceedings of the 13th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, January 1997.
[8]ANSYS 10.0 Online Reference.
[9]EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Package.
[10]EIA/JESD51-2, Integrated circuit Thermal Test Method Environment Conditions – Natural Convection (Still Air).
[11]EIA/JESD51-6, Integrated circuit Thermal Test Method Environment Conditions – Forced Convection (Moving Air).
[12]EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Package
[13]EIA/JESD22-A113D, Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing.
[14]Thermal Enhancement Package Technology , Thermal Characterization Laboratory, ASE Jun. 2006 .
[15]許介維, “PBGA構裝體附加散熱器的熱傳分析,” 國立成功大學機械科學研究所碩士論文, 2008.