簡易檢索 / 詳目顯示

研究生: 鄭崑硯
Jheng, Kun-Yan
論文名稱: 土壤液化對地下維生管線影響之振動台試驗研究—建築物近端管線
Shaking Table Test on the Influences of Soil Liquefaction on Buried Lifelines—Pipelines at the Near Side of Buildings
指導教授: 柯永彥
Ko, Yung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 139
中文關鍵詞: 土壤液化振動台試驗強制變位試驗地下維生管線管-土互制抗撓性能
外文關鍵詞: Soil liquefaction, Shaking table test, Forced displacement test, Buried lifelines, Soil-pipeline interaction, bending resistant performance
相關次數: 點閱:653下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為充分了解土壤液化對地下維生管線之不利影響,利用大型雙軸向柔性邊界試驗箱製作實尺寸建築物地下維生管線之物理模型,以代表性實際地震紀錄作為輸入運動進行振動台試驗,實際觀察地震所激發之超額孔隙水壓、其所導致之管線上浮或沉陷、以及土壤液化引致地盤變位對掩埋於其中之管線所造成之作用。本研究針對該試驗中之建築物近端管線(亦即用戶管)進行探討,包括分岐式與懸臂式之配置方式;其中,前者用以觀察實際工程配管方式下,土壤液化引致遠端管線上浮或沉陷對近端管線所造成之影響,並探討抗撓性能;後者懸臂式之方式則用以觀察管線在地震與土壤液化作用下管-土互制之行為與超額孔隙水壓之作用。由試驗結果發現,液化發生後,地盤與懸臂式管線之加速度皆有明顯下降,且懸臂式管線與地盤受震反應一致且同相。進一步藉由懸臂式管線周圍土體之超額孔隙水壓估算其所引致之管線上浮力,所得結果與Chian et al. (2014)提出之管線抗浮穩定性簡化公式計算結果相近;然而,利用前述求得的管線上浮力以擬靜態分析估算管端變位,發現所得結果低於實測管線變位量。進一步根據振動台試驗所觀察到之管線變位進行擬靜態強制變位試驗,結果顯示在懸臂式之配置下,自來水波狀不銹鋼管之設計能夠提供良好的抗撓性能,而在相同指定變位量下,自來水耐衝擊硬質聚氯乙烯管較接近降伏狀態;汙水硬質聚氯乙烯管可能因為管徑大,所承受浮力較大且僅填充半滿水,故承受較大應變量;天然氣高密度聚乙烯管則最接近降伏狀態,可能為內容物為氣體而於液化時有較明顯之上浮所致。另一方面,分岐式自來水管線強制變位試驗之結果顯示耐衝擊硬質聚氯乙烯管與波狀不銹鋼管均未達降伏狀態,但耐衝擊硬質聚氯乙烯管於固定端較接近降伏,波狀不銹鋼管則是在波狀段轉折前的傾斜管段較易達到降伏;分岐式天然氣管變位試驗之結果則顯示在強制變位作用下應變集中發生於地下聚乙烯管段,可能原因為地面段之鍍鋅鋼管與地下段之聚乙烯管線勁度差異過大。綜合以上,本研究之成果有助於掌握液化地盤中地下管線之耐震性能,作為工程設計參考之依據。

    To investigate the impact of soil liquefaction on buried pipelines, shaking table tests on a prototype model of buried lifelines of buildings were conducted, and the focus of this study was on those at the near side of buildings, including branching and cantilever pipelines. The adopted input motions were the representative real earthquake records. Results showed that the seismic responses of cantilever pipelines and the ground were nearly consistent during the tests, and the acceleration of both considerably reduced after liquefaction. Furthermore, the uplift force of the pipeline during liquefaction estimated by the measured excess pore water pressure around the pipeline was close to that calculated by the simplified equation proposed by Chian et al (2021). However, the end displacement of the cantilever pipeline estimated using the aforementioned uplift force as uniformly distributed load was lower than the actual observation. The forced displacement tests were further conducted using the pipeline displacement observed in the shaking table tests. Results showed that all the pipelines under both the cantilever and branching configurations maintained linear and were still far from yielding. Additionally, The corrugated stainless steel pipe for potable water was verified to have better bending resistant performance than the PVC one. It was also found that the large difference in stiffness between the galvanized steel pipe above the ground surface and the PE pipe under the ground in the typical layout of near-building natural gas pipeline resulted in much larger strain in the PE pipe.

    摘要 I Abstract III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章、緒論 1 1.1 研究背景及動機 1 1.2 研究方法與流程 3 1.3 論文架構 4 第二章、文獻回顧 7 2.1 土壤液化之定義與發生機制 7 2.2 地下維生管線簡介 8 2.3 土壤液化對地下維生管線之影響 12 2.4 地下管線受土壤液化影響之物?模型試驗回顧 18 2.5 地下維生管線受土壤液化影響之分析方法回顧 23 第三章、試驗方法 25 3.1 試驗概述 25 3.2 試驗設備 25 3.2.1 長衝程高速度地震模擬振動台 25 3.2.2 新型雙軸向柔性邊界剪力試驗盒 27 3.3 建築物近端地下維生管線模型 28 3.3.1 地盤材料與準備方法 28 3.3.2 管線設計、配置與安裝 29 3.4 量測儀器與配置 38 3.5 振動台試驗步驟與輸入運動 47 3.5.1 試體準備階段—純地盤簡諧激振試驗 47 3.5.2 地下維生管線地震模擬試驗 49 3.6 建築物近端維生管線強制變位試驗 52 第四章、地盤液化情況 54 4.1 純地盤簡諧激振試驗 54 4.1.1 50 gal振幅簡諧激振試驗 54 4.1.2 75 gal振幅簡諧激振試驗 56 4.2 地下維生管線地震模擬試驗 58 4.2.1 50 gal振幅簡諧激振試驗 58 4.2.2 1999年集集地震模擬試驗(100 gal) 60 4.2.3 2016年美濃地震模擬試驗(100 gal) 61 4.2.4 1999年集集地震模擬試驗(200 gal) 63 4.2.5 2016年美濃地震模擬試驗(200 gal) 64 4.2.6 2018年花蓮地震模擬試驗(200 gal) 65 4.2.7 1999年集集地震模擬試驗(300 gal) 66 4.3 地盤沉陷與相對密度變化 69 第五章、建築物近端地下維生管線受震反應 71 5.1 懸臂管線加速度與管~土互制行為 71 5.1.1 50 gal振幅簡諧激振試驗 71 5.1.2 1999年集集地震模擬試驗(100 gal) 73 5.1.3 2016年美濃地震模擬試驗(100 gal) 75 5.1.4 1999年集集地震模擬試驗(200 gal) 77 5.1.5 2016年美濃地震模擬試驗(200 gal) 79 5.1.6 2018年花蓮地震模擬試驗(200 gal) 81 5.1.7 1999年集集地震模擬試驗(300 gal) 83 5.2 懸臂管變位 85 5.3 管線旁超額孔隙水壓 90 5.4 懸臂管線因液化上浮分析 94 5.4.1 地下管線之抗浮穩定性理論 94 5.4.2 實測超額孔隙水壓引致的上浮力積分式 95 5.4.3 懸臂梁受均佈載重之撓曲變位解析解 96 5.4.4 懸臂管線因液化上浮分析結果 97 第六章、建築物近端維生管線強制變位試驗 102 6.1 試驗情境 102 6.2 懸臂管線應變分布 104 6.3 分岐管線應變分佈 115 6.4 建築物近端管線抗變位性能之討論 131 第七章、結論與建議 132 7.1 結論 132 7.2 建議 134 參考文獻 135 附錄 138

    1. 內政部營建署,污水下水道用戶接管實務手冊,2014。
    2. 中華民國公用瓦斯事業協會,公用天然氣事業輸配氣設備施工規範,2014。
    3. 詹焜耀,許敏能,黃裕泰,「波狀不銹鋼管於自來水給水管之應用」,自來水會刊,第29卷,第3期,2010。
    4. 臺灣自來水股份有限公司,自來水管埋設工程施工說明書,2020。
    5. 臺北自來水事業處,臺北自來水事業處自來水用水設備審圖、檢驗、設計作業手冊,2020。
    6. 李崇正、洪汶宜、莊汶雅、魏雨辰、陳福勝、吳文隆、蔡立盛,「應用離心機試驗探討隧道承載土層液化行為」,中華技術期刊,第93期,第166-167頁,2012。
    7. 翁作新、陳家漢、程漢瑋、吳繼偉,「大型振動台剪力盒土壤液化試驗(III)-飽和越南砂試體受振沉陷之探討」,國家地震中心研究報告,NCREE-06-019,2006。
    8. 陳正興、陳家漢,地震引致的土壤液化與側潰現象,科學發展,第498期,第12-17頁,2014。
    9. 葉芳耀、吳俊霖、陳昱志,「專題報導: 0206高雄美濃地震事件勘災紀要」,國家地震工程研究中心,第97期,第1-25頁,2016。
    10. 饒瑞鈞,「2016年高雄美濃地震-震後科學調查」,臺灣地震科學中心,2017。
    11. 盧志杰,黃俊鴻,柯永彥,倪勝火,「2018日本北海道地震勘災摘要報告」,第162期,第73-84頁,2019。
    12. 李宜庭,「液化地盤中群樁基礎縮尺模型振動台試驗」,碩士論文,國立成功大學土木工程研究所,台南,2020。
    13. 蔡東穎,「土壤液化對地下維生管線影響之振動台試驗研究—建築物遠端管線」,碩士論文,國立成功大學土木工程研究所,台南,2022。
    14. Alhussainy, Faez; Sheikh, M. Neaz; and Hadi, Muhammad N. S., “Behaviour of small-diameter self- compacting concrete-filled steel tubes”. Faculty of Engineering and Information Sciences - Papers: Part B., pp.363, 2018.
    15. Chen, C.H., Ting, G.C., Chang, W.K., Hwang, J.H., “Development of a new biaxial shear box for shaking table tests simulating near-fault earthquakes,” 8th Japan-Taiwan Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall, Kyoto, Japan, 2018.
    16. Chian, S.C., Madabhushi, S.P.G., “Effect of buried depth and diameter on uplift of underground structures in liquefied soils,” Soil Dynamics and Earthquake Engineering, Vol. 41, pp. 181-190, 2012.
    17. Chian, S.C., Tokimatsu, K., Madabhushi, S.P.G., “Soil liquefaction-induced uplift of underground structures: physical and numerical modeling”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140(10), 2014.
    18. Cubrinovski, M., “Liquefaction-induced damage in the 2010-2011 Christchurch (New Zealand) Earthquakes,” 7th International Conference on Case Histories in Geotechnical Engineering, Chicago, IL, 2013.
    19. Cubrinovski, M., Hughes, M., Bradley, B., McCahon, I., McDonald, Y., Simpson, H., Cameron, R., Christison, M., Henderson, B., Orense, R., O’Rourke, T., “Liquefaction Impacts on Pipe Networks,” Research Report 2011-04, University of Canterbury, 2011.
    20. F Jafarzadeh, H. Farahi Jahromi, E. Abazari Torghabeh, “Investigating dynamic response of a buried pipeline in sandy soil layer by 1g shaking table test,” Journal of Civil Engineering, Vol.8 (2), pp. 107-124, 2010.
    21. Hwang, J.H., Lu, C.C., Yang, H.C., Tsai, C.C., “Soil Liquefaction Issues in Meinong Earthquake,” 5th IASPEI / IAEE International Symposium on Effects of Surface Geology on Seismic Motion, Taipei, Taiwan, 2016.
    22. Ishihara, K.,“Stability of natural deposits during earthquakes”, International conference on soil mechanics and foundation engineering Vol. 11, pp. 321-376, 1985.
    23. Chiou, J.S. , Ko, Y.Y. , Hsu, S.Y. , Tsai, Y.C.,“Testing and analysis of a laterally loaded bridge caisson foundation in gravel,” Soils and foundations, Vol. 52 (3), pp. 562-573, 2012.
    24. Ko, Y.Y., Chen, C.H.,“ On the variation of mechanical properties of saturated sand during liquefaction observed in shaking table tests,” Soil Dynamics and Earthquake Engineering Vol. 129:10546, 2020.
    25. Kang, G.C. , Tobita, T. , Iai, S. , Ge, L., “Centrifuge modeling and mitigation of manhole uplift due to liquefaction,” Geotechnical and Geoenvironmental Engineering. 139: pp. 458-469, 2013.
    26. Ling, H. I. , Mohri, Y. , Kawabata, T. , Liu, H. , Burke, C. and Sun, L., “Centrifuge modeling of seismic behavior of large-diameter pipe in liquefiable soil,” Geotechnical and Geoenvironmental Engineering, Vol. 129(12): pp. 1092-1101, 2003.
    27. Masahide Otsuboa, Ikuo Towhata, Toshihiko Hayashida, Bangan Liu, Shigeru Goto., “Shaking table tests on liquefaction mitigation of embedded lifelines by backfilling with recycled materials,” Soils and Foundations , Vol. 56(3), pp. 365-378, January, 2016.
    28. Martin, G. R.,W. D. L. Finn and H. B. Seed., “Fundamentals of Liquefaction under Cyclic Loading,” J. Geotech., Div. ASCE, Vol. 101(GT5), pp. 423-438, 1975.
    29. Oda, K., Ishihara, T., Miyajima, M., “Research of earthquake resistant ductile iron pipe (ERDIP) for fault crossing,” 9th Water System Seismic Conference, Sendai, Japan, 2015.
    30. Omuro, H., Himono, T., “Polyethylene pipeline performance against earthquake”, 19th Plastic Pipes Conference, Las Vegas, NV, 2018.
    31. Shimamura, K., Hamada, M., Yasuda, S., Ohtomo, K., Fujita, Y., Kojima, S., Taji, Y., “Load on pipes buried in a non-liquefaction layer due to liquefaction-induced ground displacement,” 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000.
    32. Shimamura, K., Hamada, M., Yasuda, S., Kojima, S., Fujita, Y., Kikuchi, T., “Experimental and analytical study of the floatation of buried gas steel pipe due to liquefaction,” Proc. 12 WCEE. Auckland, New Zealand, pp.1385, 2000.
    33. Ueng, T.S. , Wang, M.H., Chen, M.H., Chen, C.H., Peng, L.H., “Large Biaxial Shear Box for Shaking Table Test on Saturated Sand,” Journal of Geotechnical Testing, Vol. 29, No. 1, 2006.
    34. White, D.J., Barefoot, A.J., Bolton, M.D., “Centrifuge modelling of upheaval buckling in sand,” Journal of Physical Modelling in Geotechnics,Vol.1(2), pp.19-28, 2001.
    35. Yasuda, S., Harada, K., Ishikawa, K., Kanemaru, Y., “Characteristics of liquefaction in Tokyo Bay area by the 2011 Great East Japan Earthquake,” Soils and Foundations, Vol. 52(5), pp. 793-810, 2012.
    36. Youd, T.L., “Ground failure investigations following the 1964 Alaska earthquake”, 10th U.S. National Conference on Earthquake Engineering, 2014.

    下載圖示 校內:2025-02-28公開
    校外:2025-02-28公開
    QR CODE