| 研究生: |
簡豪挺 Chien, Hao-Ting |
|---|---|
| 論文名稱: |
污泥中重金屬結合型態對化學萃取
重金屬效率之影響 The influence of heavy metal combined forms of sludge on the heavy metal removing efficiency by chemical extraction |
| 指導教授: |
高銘木
Kao, Ming-Muh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 生物毒性試驗 、化學萃取 、螯合劑 、連續萃取 、污泥 、重金屬 |
| 外文關鍵詞: | heavy metal, sludge, chemical extraction, chelating agent, sequential continuous extraction, toxicity test |
| 相關次數: | 點閱:150 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國內有害重金屬污泥每年產量約32萬公噸,以固化、掩埋方式處理已不合時宜,未來勢必朝向污泥資源再利用的方向發展,資源再生技術可分為重金屬與污泥的固定化或分離化兩類。本研究將嘗試以酸劑與螯合劑萃取污泥中之重金屬,並透過連續萃取法討論重金屬的結合型態對於萃取效率的影響,最後對處理前後之污泥進行生物毒性試驗。
試驗用污泥取自電鍍、皮革、鋼鐵與材料業,重金屬主要存在於鐵錳氧化態與殘留態,碳酸鹽態亦可發現相當的存在量,在4種工業廢水污泥中,重金屬結合型態分布情況不完全相同。
化學試劑對重金屬(鋅、鎳、鉻、銅、鉛)的萃取實驗結果顯示,0.1N HCl萃取的重金屬主要來自於碳酸鹽型態,其中對電鍍與皮革污泥之碳酸鹽態萃取效率可達61%~90%,但對於鋼鐵與材料污泥之碳酸鹽態之萃取效率僅1.6%~13.8%,此與萃取液pH值被高鹼性的污泥中和有關。當 HCl濃度提高至1N時,對於以碳酸鹽態存在的重金屬幾乎可以完全去除,對於鐵錳氧化態的萃取效率可達(56%~91%),但對於殘留態(0%~20%)之萃取效率仍不佳。EDTA與DTPA則對於以碳酸鹽態的萃取效率(40%~95%)較佳,而且不受污泥pH值影響,但是會受限於試劑本身的強度不足而無法完全移除。
污泥之生物毒性試驗方面,發現種子之根系長度較發芽率的敏感性為高,在未處理組的污泥,EC值過高,為抑制種子根系生長的主因。污泥經過HCl處理後,雖可降低重金屬總量與EC值,但污泥酸度會下降而且殘留的鎳與銅濃度仍偏高,因此種子的根系生長情形反而較未處理組為差。污泥經過EDTA與DTPA處理後,種子的生長狀況較HCl處理組為佳,此因螯合劑之pH值較為溫和。
The production of hazardous heavy metals sludge in Taiwan has reached 320,000 tons per year. Sludge disposal methods of solidification and landfill is irrelevantly, the future trend presented showing recycle and reuse. This research try to use acid or chelating agent to remove heavy metals from sludge and evaluate the influence of form of heavy metal by sequential continuous extraction on the extract efficiency. The biological toxicity test before and after acid or chelating agent of sludge were evaluated, too.
Sludge sampled from electroplating、leather、iron-steel and materials manufacturing industry, the results of sequential continuous extraction indicated that heavy metals fractions were significantly different. Heavy metals in sludge existed as the forms of carbonate fraction, Fe-Mn fraction and residue fraction mostly. The mobile of heavy metals is not high because pH of sludge is above 7.
For the extraction experiments, the results indicated that 0.1N HCl was more effective extract to carbonate fraction,61%~90% carbonate fraction of electroplating and leather sludge was extracted, but only 1.6%~13.8% carbonate fraction of iron-
steel and materials sludge was extracted because of solution pH was neutralized. When HCl concentration was increase to 1N, carbonate fraction, Fe-Mn fraction and residue fraction was extracted to 100%, 56%~91% and 0%~20%, respectively. EDTA and DTPA was more effective extract to carbonate fractions independent of pH but could not extract completely because of reagent strength was not enough.
Sludge toxicity evaluation results show that root elongation was more sensitive than seed germination, the raw sludge cause inhibition on the root length growth because EC was higher. After HCl treatment, although total metal concentrations in sludge were decreased but lower pH and residual niclel、copper content cause root length growth is worse. After EDTA and DTPA treatment, seed germination and root growth conditions were better than HCl treatment form because of chelators pH value were near 7.0 .
參考文獻
行政院環境保護署,「廢棄物清理法」,網站名稱 http://www.epa.gov.tw
行政院環境保護署-環境檢驗所,「廢棄物檢測方法彙編」,網站名稱 http://www.niea.gov.tw
經濟部工業局-工業廢棄物共同清除處理計劃,網站名稱http://proj.moeaidb.gov.tw/iwmct/
中興顧問社,「全省工業區污水處理系統功能評估」,1995
歐陽橋暉,「下水道工程學」,長松出版社,1995
經濟部工業局編印,「金屬工業廢水回收處理技術案例彙編」,1995
經濟部工業局編印,「印刷電路板製造業廢棄物資源化案例彙編」,1996
李清華、王興濬、林昌銘,「以多重毒性特性溶出試驗(MTCLP)研究廢棄物之長期穩定性」,工業污染防治報導,第155-169頁,第42期,1992
黃進章、陳俊英,「固化處理操作營運實務」,工業污染防治報導,第64期,第189-207頁,1997
巢志成、陳明德、王鑑恆,「污泥之焚化處理技術」,工業污染防治報導,第64期,第138-155頁,1997
江康鈺、王鯤生,「污泥熔融處理及資源再利用技術」,工業污染防治報導,第64期,第156-187頁,1997
呂慶慧、王壬、楊維鈞,「回收電鍍污泥中有價金屬之研究」第十屆廢棄物處理技術研討會論文集,第166-169頁,1995
李嘉宜、楊萬發,「以酸溶出法回收電鍍污泥中之鉻金屬」,第十屆廢棄物處理技術研討會論文集,第354-358頁,1995
李靜怡 ,「催化劑對底泥重金屬生物溶出之影響」,國立交通大學環境工程研究所碩士論文,2000
Alvarez E. Alonso, Mochon M. Callejon, Jimenez Sanchez J. C., Ternero Rodriguez M., “Heavy metal extractable in sludge from wastewater treatment planes”, Chemosphere, Vol.47, p.765-775, 2002
Bernal. M. P., Navarro. A. F., Sanchez-Monedero. M. A., Roig. A. and Cegarra. J., “Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil”, Soil Biol. Biochem, vol.30,No.3, p.305-313, 1998
Blais J.F., Tyagi R.D., Auclair J.C. “Bioleaching of metals from sewage sludge by sulfur-oxidizing bacteria”, Journal of Environmental Engineering, Vol. 118, no. 5, pp. 690-707, 1992
Blais J. F., Tyagi R. D., Auclair J. C. and Huang C. P., “Comparison of acid and microbial leaching for metal removal from municipal sludge”, Wat. Sci. Tech. , Vol.26, No.1-2, p197-206, 1992
Chmielewski. A. G., Urbanski. T. S., Migdal. W., “Separation technologies for metal recovery from industrial wastes”, Hydrometallurgy, Vol. 45 ,p.333-344, 1997
Couillard D., Chartier M., Mercier G., “Bacterial leaching of heavy metals form aerobic sludge”, Bioresource Technology,Vol.36, p.293-302, 1991
Couillard D. and Shucaizhu “Bacterial leaching of heavy metals from sewage sludge for agricultural application”, Water, Air and Soil Pollution,Vol.63,
No.1/2, p.67-80, 1992
Couillard D. and Mercier G. “An economic evaluation of biological emoval of heavy metals from wastewater sludge”, Water Environment Research, Vol.66, No.1, p.67-80, 1994
Couillard D, Mercier Guy and Chartier Myriam, “Strategies to maximize the microbial leaching of lead from metal-contaminated aquatic sediments”, Wat. Res., Vol.30, No.10, p2452-2464, 1996
Elliott H. A. and Brown G. A., “Comparative evaluation of NTA and EDTA for extractive decontamination of pb-polluted soils”, Water, Air, and Soil Pollution, Vol.45, p361-369, 1989
Gruter H., Matter M., Oehlmann K. H. and Hicks M. D., “Drying of sewage sludge-an important step in waste disposal”, Wat. Sci. Tech., Vol.22, No.12, p.57-63, 1990
Gemma Reauret, “Extraction procedures for the determination of heavy metals in contaminated soil and sediment”, Talanta, Vol.46.p.449-455, 1998
Gomez .A. J. L., Giraldze. I., Sanchez-Rodas. D., Morales. E., “Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments”, Analytica Chimica Acta, Vol.414, p.151-164, 2000
Hong J., Pintauro P. N., “Desorption-complexation-dissolution characteristics of adsorbed cadmium from kaolin by chelator”, Water, Air, Soil Pollution,
Vol.86, p.35-50, 1996
Hong J., Pintauro P.N., “Selective removal of heavy metals from contaminated kaolin by chelator” ,Water, Air, Soil Pollution, Vol.87, p.73-91, 1996
Hong Kyung-Jin, Tokunaga Shuzo, Kajiuchi Toshio, “Extraction of heavy metals from MSW incinerator fly ashes by chelating agents”, Journal of
Hazardous Materials, B75, p57-73, 2000
Howard. J. L. and Shu Jianing, “Sequential extraction analysis of heavy
metals using a chelating agent (NTA) to counteract resorption”, Environmental Pollution, Vol. 91, No.1, p.89-96, 1996
Kabata-Pendias, A., “Behavioural properties of trace metals in soils”,Applied Geochemistry, Vol.2, p.3-9, 1993
Krishnan E. Radha, Utrecht Piilip W., Patkar Avi N., Davis Jeffrey S., Pour Steve G., Foerst Mary E., “Recovery of Metals from Sludge and Wastewaters”, 1992
Maiz. I., Arambarri. I., Garcia. R., Millan. E., “Evaluation of metal availability in polluted soils by two sequential extraction procedures using factor analysis”, Environmential Pollution, Vol.110, p.3-9, 2000
Ma. Y. B. , Uren N. C., “transformations of heavy metals added to soil-
application of a new sequential extraction procedures”, Geoderma, Vol.84, p.157-168, 1998
Naoum. C., Fatta Despo, Haralambous Katherine J., and Maria Loizidou, “Removal of heavy metals from sewage sludge by acid treatment”, J. Environ. Sci Health, A36(5), p.873-881, 2001
Neale C. Nelson, Bricka R. Mark, Allen C. Chao, “Evaluating acids and chelating agents for removing heavy metals from contaminated soils”,
Enviromental Progress, Vol.16, No.4, 1997
Oliver B. G. and Carey J.H., “Acid solubilization of sewage sludge and ash constituents for possible recovery”, Water Research, Vol.10, p1077-1081, 1976
Onaka. T., “Sewage can make Portland cement: a new technology for ultimate reuse of sewage sludge” Wat. Sci. Tech. , Vol.41, No.8, p.93-98, 2000.
Perez-cid. B., Lavilla. I., Bendicho. C., “Application of microwave extraction for partitioning of heavy metals in sewage sludge”, Analytica Chemica Acta , Vol. 378, p.201-210, 1999
Pichtel J., Pichtel T. M., “Comparison of solvents for ex-situ removal of chromium and lead from contaminated soil”, Environ. Eng. Sci., Vol.14,
97-104, 1997
Qian Jin, Shan Xiao-quan, Wang Zi-jian, Tu Qiang, “Distribution and plant availability of heavy metals in different particle-size fractions of soil”, The Science of Total Environment, Vol.187, p.131-141,1996
Robert W. Peters, “Chelant extraction of heavy metals from contaminated soils”, Journal of Hazardous Materials, Vol.66, p151-210, 1999
Savvides C., Papadopoulos A., Haralambous K. J. and Loizidou M., “Sea sediments contanminated with heavy metals: metal speciation and removal” , Wat. Sci. Tech., Vol.32, No.9-10, p.65-73, 1996
Scancar Janez, Radmila Milacic, Marjeta Strazar, Olga Burica, “Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge”, The Science of the Total Environment, Vol.250, p9-19, 2000
Seidel H., Ondruschka J., Morgenstern P. and Stottmeister U., “Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria: a feasibility study “, Wat. Sci. Tech., Vol.37, No.6-7, p.387-394, 1998
Sloot Van der, “Developments in evaluating environment impact from utilization of bulk inert wastes using laboratory leaching tests and field verification”, Waste Manage., Vol.16, p.65-81, 1996
Tessier. A., Campbell. P. G. C., and Bisson. M., “Sequential extraction
procedure for the speciation of particulate trace metals”, Analytical Chemistry, Vol.51, No.7, 1979
Tokalioglu Serife, Kartal Senol, Elci Latif, “Determination of heavy metals and their speciation in lake sediments by flame atomic adsorption spectrometry after a four-stage sequential extraction procedures”, Analytica Chimica Acta, Vol.413, p.33-40, 2000
Vanni. A., Gennaro. M. C., Cignetti. A., Petronio. B. M., Petruzzelli. G., Liberatori. A., “Heavy metal speciation in anaerobic municipal sludge
Comparison between single and sequential extraction”, J. Environ. Sci. Health, A32(5), p.1467-1489, 1997.
Veeken A.H.M. and Hamelers H.V.M., “Removal of heavy metals from sewage sludge by extraction with organic acids”, Wat. Sci. Tech. Vol.40, No.1, p129-136, 1999
Yoshizaki and Tahei Tomida, “Principle and process of heavy metal removal from sewage sludge”, Enviro. Sci. Technol, Vol.34, p1572-1575, 2000
Xiang L., Chan L. C., Wong J. W. C., “Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria”, Chemophere, Vol.41, p.283-287, 2000
Weather. J., Ogada. T., “Sewage sludge combustion”, Progress in Energy and Combustion Science, Vol. 25, p55-116, 1999
Wong J. W. C, Fang M., Ma K. K., Wong M. H., “Co-composting of sewage and coal fly ash: nutrient transformations”, Bioresource Technology, Vol.67, p19-24, 1999
Wong J. W. C., Fang K. Li, M., Su D. C., “Toxicity evaluation of sewage sludges in Hong Kong”, Enviroment International, Vol.27,p.373-380, 2001