簡易檢索 / 詳目顯示

研究生: 吳悠
Wu, You
論文名稱: 氟化乙烯基高分子/離子液體/碳酸酯類之高分子電解質膜製備、鑑定及鋰離子電池之應用
Preparation and Characterization of poly(VdF-co-HFP)/Ionic Liquid/Carbonate as Polymer Electrolytes for Lithium-Ion Batteries
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 91
中文關鍵詞: 高分子電解質離子液體碳酸酯類鋰離子電池循環充放電效率
外文關鍵詞: polymer electrolyte, ionic liquid, carbonate, lithium-ion batteries, cyclic performance
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 商業電解液所引起之安全問題已經阻礙鋰離子電池的實際應用,因此迫切需要尋找電化學穩定、不易燃且非揮發性的替代性電解質。低溫熔融鹽之室溫離子液體(ILs)由於其不可燃、高熱穩定和寬電化學窗口等特性增加電解質之耐燃性及傳導度。儘管如此,此類電解質之循環充放電效率低,故本研究將具機械強度之高分子(poly(VdF-co-HFP))、具阻燃性之ILs(1E3mTFSI與1B3mTFSI)、提升循環壽命之有機碳酸酯類(EC、PC、DEC等)和鋰鹽(LiTFSI)結合溶劑鑄膜法提供更優化的電解質系統,同時利用SEM、XRD、SAXS、TGA、DSC與電化學儀器探討高分子電解質膜之樣貌、熱穩定性、電性及電池性能及阻抗變化等各方面之影響。純 poly(VdF-co-HFP)高分子於添加ILs/碳酸酯類/鋰鹽後,結晶度由18.0%下降至4.9%,同時結晶區域之層間距離增加結構鬆散化,而相分離亦影響膜之應用表現。1E3mTFSI系統較1B3mTFSI者佳,不僅本質上具有高離子傳導度10-3 S/cm且電位窗範圍約4.7V,於1C下放電電容量更高達118.2 mAh/g,循環壽命於0.2C下之圈數高達350圈,且其循環充放電曲線與交流阻抗測試結果息息相關。添加高熱穩定性之ILs及改善循環充放電之碳酸酯類後改善高分子電解質膜特性,促使此系統應用於高性能及高安全性之鋰離子傳導介質,並期望能取代商業電解液於鋰離子電池上之應用。

    With the unstable nature of liquid electrolytes causing the safety concern of lithium-ion batteries (LIBs), polymer electrolytes have attracted interest due to their intrinsic low volatility and flammability. We report a type of polymer electrolytes comprising commercially available poly(VDF-co-HFP), ionic liquids (ILs), and carbonates, which exhibited stable solid electrolyte interface (SEI) layer and good cycling efficiency. The as-prepared polymer electrolytes exhibited improved ionic conductivity and enhanced performance of charge-discharge capacity at various C rates. The polymer electrolytes with optimized weight percentages of ILs and carbonates exhibited ionic conductivity of 10-3 S/cm and electrochemical stability window of 4.7V at room temperature. Most importantly, the long-term cyclic performance is significantly improved by adding the carbonates and the columbic efficiency remained higher than 98% over 350 cycles. This flame retarded polymer electrolyte can be applied in LIB and may be suitable in situations in great need of safety.

    目錄 摘要 I 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 附錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 4 2-1鋰離子電池 4 2-2正極材料 5 2-2-1過渡金屬氧化物(transition metal oxides) 6 2-2-2尖晶石狀物(Spinels) 7 2-2-3鋰金屬磷酸鹽類(Lithium metal phosphates) 7 2-3負極材料 9 2-4電解質 12 2-4-1液態電解質 12 2-4-2離子液體(ILs) 15 2-4-3離子液體與碳酸酯類混合物 17 2-4-4高分子電解質 18 2-4-5離子液體型高分子電解質(IL-SPE) 21 2-4-6 離子液體與碳酸酯類混合物(OLE-IL-SPEs) 22 第三章 實驗 23 3-1 實驗藥品與材料 23 3-2 儀器設備 24 3-3 樣品製備 25 3-3-1 合成陰離子取代之離子液體 25 3-3-2 固態高分子電解質模之製備 26 3-4 樣品性質測試 28 3-4-1 離子傳導度(Ionic conductivity) 28 3-4-2 鋰離子遷移數(Lithium Transference Number, TLi+) 28 3-4-3 線性掃描伏安法(Linear scanning voltammogram, LSV) 29 3-5 半電池性能測試 29 3-5-1 LiFePO4電極製備 29 3-5-2 電池組裝 29 3-5-3 充放電測試 30 3-5-4 循環充放電表現 30 3-5-5 交流阻抗測試(AC impedance spectroscopy) 31 3-6 實驗設備原理與分析 31 3-6-1 掃描式電子顯微鏡(Scanning electron microscope, SEM) 31 3-6-2 X光繞射儀(X-ray diffraction, XRD) 32 3-6-3 小角度X光散射儀(Small-Angle X-ray Scattering, SAXS) 32 3-6-4 熱重分析(Thermogravimetric analysis, TGA) 33 3-6-4示差掃描量熱儀(Differential Scanning Calorimetry, DSC) 33 3-6-5電化學交流阻抗分析設備(AC impedance spectroscopy) 34 第四章 結果與討論 39 4-1樣品製備 39 4-2樣品樣貌測試 41 4-2-1掃描式電子顯微(SEM)圖 41 4-2-2 X光繞射(XRD)圖 44 4-2-3小角度X光散射儀(SAXS) 46 4-3樣品熱穩定性測試 48 4-3-1熱重分析(TGA) 48 4-3-2示差掃描熱量分析(DSC) 51 4-4樣品電性測試 53 4-4-1離子傳導度 53 4-4-2鋰離子遷移數(TLi+) 56 4-4-3線性掃描伏安法(LSV) 58 4-5半電池性能測試 60 4-5-1充放電測試 60 4-5-2循環充放電表現 63 4-5-3交流阻抗測試 68 第五章 結論 73 第六章 參考文獻 74 附錄 79

    1. Deng, D., Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering 2015, 3 (5), 385-418.
    2. Toprakci, O.; Toprakci, H. A. K.; Ji, L.; Zhang, X., Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-Ion Batteries. KONA Powder and Particle Journal 2010, 28 (0), 50-73.
    3. Xu, B.; Qian, D.; Wang, Z.; Meng, Y. S., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports 2012, 73 (5-6), 51-65.
    4. Mukherjee, R.; Krishnan, R.; Lu, T.-M.; Koratkar, N., Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 2012, 1 (4), 518-533.
    5. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources 2015, 282, 299-322.
    6. He, P.; Yu, H.; Li, D.; Zhou, H., Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. Journal of Materials Chemistry 2012, 22 (9), 3680.
    7. Koksbang, R., Cathode materials for lithium rocking chair batteries. Solid State Ionics 1996, 84 (1-2), 1-21.
    8. Amatucci, G., Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics 1996, 83 (1-2), 167-173.
    9. Armstrong, A. R.; Bruce, P. G., Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996, 381 (6582), 499-500.
    10. Shin, Y.; Manthiram, A., Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides. Journal of The Electrochemical Society 2004, 151 (2), A204.
    11. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society 1997, 144 (4), 1188-1194.
    12. 陳柏延; 李炤佑; 張必聖, 鋰離子電池電極材料發展. 新新季刊 2014, 第四十二卷 (第二期), 114-123.
    13. Gong, C.; Xue, Z.; Wen, S.; Ye, Y.; Xie, X., Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. Journal of Power Sources 2016, 318, 93-112.
    14. Kim, T.-H.; Park, J.-S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H.-K., The Current Move of Lithium Ion Batteries Towards the Next Phase. Advanced Energy Materials 2012, 2 (7), 860-872.
    15. Fu, K. K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S. D.; Dai, J.; Chen, Y.; Mo, Y.; Wachsman, E.; Hu, L., Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 2017, 3 (4), e1601659.
    16. Zhao, C.-Z.; Cheng, X.-B.; Zhang, R.; Peng, H.-J.; Huang, J.-Q.; Ran, R.; Huang, Z.-H.; Wei, F.; Zhang, Q., Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Materials 2016, 3, 77-84.
    17. Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
    18. Cheng, X.-B.; Yan, C.; Huang, J.-Q.; Li, P.; Zhu, L.; Zhao, L.; Zhang, Y.; Zhu, W.; Yang, S.-T.; Zhang, Q., The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Materials 2017, 6, 18-25.
    19. Miao, R.; Yang, J.; Feng, X.; Jia, H.; Wang, J.; Nuli, Y., Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources 2014, 271, 291-297.
    20. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G., High rate and stable cycling of lithium metal anode. Nat Commun 2015, 6, 6362.
    21. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 513-537.
    22. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017, 12 (3), 194-206.
    23. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
    24. Zhang, K.; Lee, G.-H.; Park, M.; Li, W.; Kang, Y.-M., Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries. Advanced Energy Materials 2016, 6 (20), 1600811.
    25. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014, 114 (23), 11503-618.
    26. Aurbach, D., Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions. Journal of The Electrochemical Society 1987, 134 (7), 1611.
    27. Tebbe, J. L.; Fuerst, T. F.; Musgrave, C. B., Degradation of Ethylene Carbonate Electrolytes of Lithium Ion Batteries via Ring Opening Activated by LiCoO2 Cathode Surfaces and Electrolyte Species. ACS Appl Mater Interfaces 2016, 8 (40), 26664-26674.
    28. Guyomard, D.; Tarascon, J. M., Rechargeable Li1+xMn2O4∕Carbon Cells with a New Electrolyte Composition. Journal of The Electrochemical Society 1993, 140 (11), 3071.
    29. Foropoulos, J.; DesMarteau, D. D., Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH. Inorganic Chemistry 1984, 23 (23), 3720-3723.
    30. Navarra, M. A., Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bulletin 2013, 38 (07), 548-553.
    31. Arya, A.; Sharma, A. L., Polymer electrolytes for lithium ion batteries: a critical study. Ionics 2017, 23 (3), 497-540.
    32. Shin, J.-H.; Henderson, W. A.; Passerini, S., An Elegant Fix for Polymer Electrolytes. Electrochemical and Solid-State Letters 2005, 8 (2), A125.
    33. Egashira, M.; Tanaka-Nakagawa, M.; Watanabe, I.; Okada, S.; Yamaki, J.-i., Charge–discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. Journal of Power Sources 2006, 160 (2), 1387-1390.
    34. Sakaebe, H.; Matsumoto, H.; Tatsumi, K., Application of room temperature ionic liquids to Li batteries. Electrochimica Acta 2007, 53 (3), 1048-1054.
    35. Wang, Y.; Zaghib, K.; Guerfi, A.; Bazito, F. F. C.; Torresi, R. M.; Dahn, J. R., Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochimica Acta 2007, 52 (22), 6346-6352.
    36. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S., Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8 (13), 2154-75.
    37. Ababtain, K.; Babu, G.; Lin, X.; Rodrigues, M. T.; Gullapalli, H.; Ajayan, P. M.; Grinstaff, M. W.; Arava, L. M., Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 degrees C. ACS Appl Mater Interfaces 2016, 8 (24), 15242-9.
    38. Kim, H.-T.; Kang, J.; Mun, J.; Oh, S. M.; Yim, T.; Kim, Y. G., Pyrrolinium-based Ionic Liquid as a Flame Retardant for Binary Electrolytes of Lithium Ion Batteries. ACS Sustainable Chemistry & Engineering 2016, 4 (2), 497-505.
    39. Gélinas, B.; Natali, M.; Bibienne, T.; Li, Q. P.; Dollé, M.; Rochefort, D., Electrochemical and Transport Properties of Ions in Mixtures of Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Salt for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2016, 120 (10), 5315-5325.
    40. Fenton, D. E.; Parker, J. M.; Wright, P. V., Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14 (11), 589.
    41. Manuel Stephan, A., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal 2006, 42 (1), 21-42.
    42. Du Pasquier, A.; Warrena, P. C.; Culvera, D.; Gozdza, A. S.; Amatuccia, G. G.; Tarasconb, J.-M., Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics 2000, 135 (1-4), 249-257.
    43. Noda, A.; Watanabe, M., Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta 2000, 45 (8-9), 1265-1270.
    44. Shin, J.-H.; Henderson, W. A.; Passerini, S., Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochemistry Communications 2003, 5 (12), 1016-1020.
    45. Reiter, J.; Vondrák, J.; Michálek, J.; Mička, Z., Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochimica Acta 2006, 52 (3), 1398-1408.
    46. Sirisopanaporn, C.; Fernicola, A.; Scrosati, B., New, ionic liquid-based membranes for lithium battery application. Journal of Power Sources 2009, 186 (2), 490-495.
    47. 傅冠穎, 環碳酸酯類對氟化乙烯基高分子/離子液體/鋰鹽之鋰離子電池類固態電解質性質與性能之影響. 碩士論文 2016.
    48. Wakai, C.; Oleinikova, A.; Ott, M.; Weingartner, H., How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 2005, 109 (36), 17028-30.
    49. Singh, T.; Kumar, A., Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach. J Phys Chem B 2008, 112 (41), 12968-72.
    50. Tang, J.; Muchakayala, R.; Song, S.; Wang, M.; Kumar, K. N., Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polymer Testing 2016, 50, 247-254.
    51. Ma, W.; Yuan, H.; Wang, X., The effect of chain structures on the crystallization behavior and membrane formation of poly(vinylidene fluoride) copolymers. Membranes (Basel) 2014, 4 (2), 243-56.
    52. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S., Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science 2014, 39 (4), 683-706.
    53. Lin, D.-J.; Lin, C.-L.; Guo, S.-Y., Network Nano-Porous Poly(vinylidene fluoride-co-hexafluoropropene) Membranes by Nano-Gelation Assisted phase Separation of Poly(vinylidene fluoride-co-hexafluoropropene)/Poly(methyl methacrylate) Blend Precursor in Toluene. Macromolecules 2012, 45 (21), 8824-8832.
    54. Guo, Q.; Han, Y.; Wang, H.; Hong, X.; Zheng, C.; Liu, S.; Xie, K., Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes. RSC Adv. 2016, 6 (103), 101638-101644.
    55. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H. K., Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry 2011, 17 (51), 14326-46.
    56. Shalu; Chaurasia, S. K.; Singh, R. K.; Chandra, S., Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly(vinylidene fluoride-co-hexafluoropropylene) with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate. Journal of Applied Polymer Science 2015, 132 (7), n/a-n/a.
    57. Abreha, M.; Subrahmanyam, A. R.; Siva Kumar, J., Ionic conductivity and transport properties of poly(vinylidene fluoride- co -hexafluoropropylene)-based solid polymer electrolytes. Chemical Physics Letters 2016, 658, 240-247.
    58. Galiński, M.; Lewandowski, A.; Stępniak, I., Ionic liquids as electrolytes. Electrochimica Acta 2006, 51 (26), 5567-5580.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE