| 研究生: |
江明信 Chiang, Ming-Hsing |
|---|---|
| 論文名稱: |
304L不銹鋼定電流與脈衝電流電漿銲接件在動態剪切荷載下之塑變行為及破壞特性比較 A Comparison of the Dynamic Shear Plastic Deformation Behavior and Fracture Characteristic of Continuous and Pulsed Current Plasma Arc Welding (PAW) Weldments of 304L Stainless Steel |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 剪切帶破壞 、304L不銹鋼 、霍普金森高速扭轉試驗機 、定電流與脈衝電流電漿銲接件 、應變速率 |
| 外文關鍵詞: | shear band fracture, strain rate, continuous and pulsed current plasma arc welding, 304L stainless steel, torsional Hopkinson Bar |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是利用霍普金森高速扭轉試驗機(Torsional Split-Hopkinson Bar)來探討及比較304L不銹鋼定電流與脈衝電流電漿銲接件之動態機械性質及破壞特性。實驗條件在室溫(25℃)下,應變速率分別為900 s-1、1300 s-1、1900 s-1、2200 s-1、2600 s-1與3300s-1的範圍內,分析並比較定電流與脈衝電流銲接件在高速扭轉荷載下所產生的塑變行為與破壞形貌的差異,同時藉助一構成方程式用以描述本材料在動態扭轉荷載下的破壞行為。
經由本實驗所得數據分析結果,可得知應變速率對304L銲接件產生相當明顯的影響。隨著應變速率的上升,兩組銲接件的塑流應力、加工硬化率、應變速率敏感性與材料內部升溫量均隨之上升,熱活化體積則隨之下降。而在同一應變速率區間內,隨應變量的提升,銲接件的應變速率敏感性也隨之升高,相反熱活化體積則隨之下降。在相同應變速率下,脈衝電流銲接件的塑流應力、加工硬化率、升溫量與應變速率敏感性均較定電流銲接件來得大,唯熱活化體積方面則較小。在破壞觀察方面,經由光學顯微鏡發現剪切面會經過銲道(FZ)、部分熔融區(PMZ)與熱影響區(HAZ),且裂紋兩側流線有明顯的扭曲現象,明顯是屬於剪切帶破壞。另外在掃瞄式電子顯微鏡觀察顯示出,304L銲接件的剪切面主要由銲道、熱影響區韌窩與平滑淺韌窩所構成。隨著應變速率的增加,兩組銲接件的銲道與熱影響區韌窩密度皆有隨之增加的趨勢,而平滑淺韌窩所分佈的區域則減少。在同一應變速率下,脈衝電流銲接件破斷面上的韌窩較小且較密集,這也代表脈衝電流銲接件具有比定電流銲接件較高的破壞應變量。最後結合巨觀機械性質與微觀結構的特性,以Kobayashi & Dodd模式之構成方程式來描述304L不銹鋼電漿銲接件在高速扭轉下的塑變反應,以作為工程結構設計之應用及參考。
The dynamic shear plastic deformation behavior and fracture characteristics of continuous current (CC) and pulsed current (PC) plasma arc weldments of 304L stainless steel under six strain rates (900s-1, 1300s-1, 1900s-1, 2200s-1, 2600 s-1 and 3300s-1) are studied at room temperature (25℃) by means of torsional split-Hopkinson bar. Results indicate strain rate significantly influences 304L weldment mechanical properties. Increasing strain rate increases flow stress, work-hardening rate, strain rate sensitivity and temperature rise of 304L weldments. For all tested strain rate ranges, strain rate sensitivity increases as strain increases, but activation volume decreases. The shear stress, work-hardening rate, temperature rise and strain rate sensitivity of PC weldments are all higher than those of CC weldments in the same strain rate, but only activation volume is lower. OM shows cracking is through the fusion zone, partially melted zone and heat affected zone. Flowlines are clearly twisted at both sides of the crack. Fracture is due to shear band formation. SEM shows fracture surfaces consist of fusion zone dimples, heat affected zone dimples and smooth shallow dimples. Increasing strain rate increases density and depth of FZ and HAZ dimples, but smooth shallow dimples decrease. This tendency is more significant in PC weldments than in CC weldments. The Kobayashi & Dodd constitutive equation successfully describes the high-strain-rate shear plastic behavior of 304L weldments.
1.蘇俊源 , “沃斯田鐵型不銹鋼電漿銲件之測試與分析” , 國立交通大學機械工程研究所碩士論文, 民86.06.
2.曾光宏 , “沃斯田鐵不銹鋼銲接性之探討” , 機械技術 , 1998.06, pp. 96-103.
3.吳憲政、李日輝 , “高碳304不銹鋼之銲接性研究” , 台電工程月刊
第552期 民83.08 , pp.28-34.
4.周漢標 , “沃斯田鐵不銹鋼之銲接特性及熱裂分析(上)” , 機械月刊, 民81.02 , pp.155-171.
5.楊山毅、周長彬 , “銲接參數對沃斯田鐵型不銹鋼固化現象與熱裂性之影響” , 銲接與切割, 民84.09, pp.1-12.
6.黃錦鐘 , “不銹鋼的銲接(一)- 不銹鋼的銲接凝固現象”, 機械月刊,民86年2月, pp227-233.
7.G. Lothongkum , P. Chaumbai , P. Bhandhubanyong , “TIG pulse welding of 304L austenitic stainless steel in flat , vertical and overhead position” , Journal of Materials Processing Technology , 89-90 , pp.410-414 , 1999.
8.Abdel-Monem EI-Batahgy , “Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels” , Materials Letters , 32 , pp.155-163 , 1997.
9.B. S. Yilbas , M. Sami , J. Nickel , A. Coban , S. A. M. Said , “Introduction into the electron beam welding of austenitic 321-type stainless steel” , Journal of Materials Processing Technology , 82, pp.13-20 , 1998.
10.A. Celik and A. Alsaran , “Mechanical and structural Properties of similar and dissimilar steel joints” , Materials characteruzation 43 : pp.311-318 , 1999.
11.M. I. Luppo , A. Hazarabedian , J. Orejero-Garcia , “Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds “ , Corrosion Science , 41, pp.87-103 , 1999.
12.M. Sireesha , V. Shankar , Shaju K. Albert , S. Sundaresan , “Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800” , Materials Science and Engineering , A292 , pp.74-82 , 2000.
13.G. Lothongkum , E. Viyanit , P. Bhandhubanyong , “Study on the effects of pulsed TIG welding parameters on delta-ferrite content , shape factor and bead quality in orbital welding of AISI 316L stainless steel plate” , Journal of Materials Processing Technology , 110 , pp.233-238 , 2001.
14.黃祺祥、陳宏志 , “不銹鋼銲接研究之探討(Ⅰ)”, 銲接與切割, 民87.01, pp.40-50.
15.黃祺祥、陳宏志 , “不銹鋼銲接研究之探討(Ⅱ)”, 銲接與切割, 民87.03 , pp.48-55.
16.陳榮廷 ,“雙相不銹鋼銲接入熱量對衝擊韌性及抗蝕能力之影響”, 銲接與切割, 民84.05, pp.42-45.
17.A. Nishimura ,R. L. Tobler ,H. Tamura ,S. Imagawa ,J. Yamamoto , “Fracture toughness of thick-section weld joint of SUS 316 at cryogenic temperature” , Fusion Engineering and Design , 42 , pp425-430 , 1998.
18.Jong-Hyun Baek ,Young-Pyo Kim ,Woo-Sik Kim ,Young-Tai Kho , “Fracture toughness and fatigue crack growth properties of the base metal and weld metal of a type 304 stainless steel pipeline for LNG transmission” , International Journal of Pressure Vessels and Piping , 78 , pp351-357 , 2001.
19.Byung Sup Rho ,Hyun UK Hong ,Soo Woo Nam , “The effect of δ-ferrite on fatigue cracks in 304L steels” , International Journal of Fatique , 22 , pp683-690 , 2000.
20.Y. C. Lin , P. Y. Chen , “Effect of nitrogen content and retained ferrite on the residual stress in austenitic stainless steel weldment “ , Materials Science and Engineering , A307 , pp.165-171 , 2001.
21.園田弘文 , “電漿電弧原理與電漿銲接之應用(Ⅰ)”, 銲接與切割, 民86年5月, pp44-pp54.
22.園田弘文 , “電漿電弧原理與電漿銲接之應用(Ⅱ)”, 銲接與切割,民86.07, pp.46-55.
23.BY E. Craig , “The Plasma Arc Process – A Review” ,Welding Journal , v67 n2 Feb. , pp19-25 , 1988.
24.T. Mohandas ,G. Madhusudhan Reddy , “A comparison of continuous and pulse current gas tungsten arc welds of an ultra high strength steel” , Journal of Materials Processing Technology , 69 , pp222-226 , 1997.
25.G. Madhusudhan Reddy ,A. A. Gokhale ,K. Prasad Rao , “Optimisation of pulse frequency in pulsed current gas tungsten arc welding of aluminium-lithium alloy sheets” , Materials Science and Technology , vol.14 , Jan. , pp61-66 , 1998.
26.Y. Sharir ,J. Pelleg ,A. Grill , “Effect of arc vibration and current pulses on microstructure and mechanical properties of TIG tantalum welds” , Metals Technology , Jun. , pp190-196 , 1978.
27.蔡履文、陳鈞、鄭勝文 ,“穿孔模態電漿銲接”, 銲接與切割 , 民82.05, pp.1-9.
28.W. C. Wang , L. W. Tsay , C. Chen and S. W. Cheng , “Study of Process Variables in Plasma Arc Welding” , Chinese Journal of Materials Science , Vol.23 , No.2 , pp.108-114 , 1991.
29.Jukka Martikainen , “Conditions for achieving high-quality welds in the plasma-arc keyhole welding of structural steels” , Journal of Materials Processing Technology , 52 , pp.68-75 , 1995.
30.Z. Sun , “Fusion zone Microstructures of Laser and Plasma Welded Dissimilar Steel Joints” , Materials and Manufacturing Processes , Vol.14 , No.1 , pp.37-52 , 1999.
31.S. C. Tjong , S. M. Zhu , N. J. Ho , J. S. Ku , “Microstructural charazteristics and creep rupture behavior of electron beam and laser welded AISI 316L stainless steel “ , Journal of Nuclear Materials , 227 , pp.24-31 , 1995.
32.G. Sasikala , M. D. Mathew , K. Bhanu Sankara Rao , S. L. Mannan , “Creep deformation and fracture behaviour of a nitrogen-bearing type 316 stainless steel weld metal “ , Journal of Nuclear Materials , 273 , pp.257-264 , 1999.
33.Tetsumi Yuri , Toshio Ogata , Masahiro Saito , Yoshiaki Hirayama , “Effect of welding structure and δ-ferrite on fatigue properities for TIG welded austenitic stainless steels at cryogenic temperature “ , Cryogenics , 40 , pp.251-259 , 2000.
34.Abdel-Salam M. Eleiche , “Strain-rate History and Tempetature Effects on the Torsional-shear Behavior of a Mild Steel” , Experimental Mechanics , Aug. , pp.285-294 , 1981.
35.R. A. Frantz , “The Dynamic Stress-Strain Behavior in Torsion of 1100-0 Aluminum Subjected to a Sharp Increase in Strain Rate” , Transactions of the ASME , Dec , pp.939-945 , 1972.
36.J. Duffy , “On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum” , Journal of Applied Mechanics , Mar. , pp.83-91 , 1971.
37.M. Nabil Bassim ,N. Panic , “High strain rate effects on the strain of alloy steels” , Journal of Materials Processing Technology , 92-93 , pp.481-485 , 1999.
38.Woei-Shyan Lee ,Su-Tang Chiou , “The Influence of loading rate on shear deformation behaviour of tungsten composite” , Composites: Part B 27B , pp.193-200 , 1996.
39.L. H. Dai ,Y. L. Bai ,S. W. R. Lee , “Experimental investigation of the shear strength of a unidirectional carbon/aluminum composite under dynamic torsional loading” , composites Science and Technology , 58 , pp.1667-1673 , 1998.
40.Y. H. Pao ,A. Gilat , “High strain rate deformation and failure of a533b steel at various temperatures” , Acta Metall. Mater. , Vol.40 , No.6 , pp.1271-1280 , 1992.
41.Tusit Weerasooriya ,Patricia A. Beaulieu , “Effects of strain rate on the deformation and failure behavior of 93wt.%W-5wt.%Ni-2wt.% Fe under shear loading” , Materials Science and Engineering , A172 , pp.71-78 , 1993.
42.A. Gilat ,C. S. Cheng , “Torsional Split Hopkinson Bar Tests at Strain Rates above 104 s-1” , Experimental Mechanics , Vol.40 , No.1 , Mar. , pp.54-59 , 2000.
43.P. Cizek ,B. P. Wynne , “A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion” , Materials Science and Engineering , A230 , pp.88-94 , 1997.
44.S. Venugopal ,S. L. Mannan ,Y. V. R. K. Prasad , “Influence of strain rate and state-of-stress on the formation of ferrite in stainless steel type AISI 304 during hot working” , Materials Letters , 26 , pp.161- 165 , 1996.
45.Yilong Bai ,Qing Xue , “Characteristics and microstructure in the evolution of shear localization in Ti-6Al-4V alloy” , Mechanics of Materials , 17 , pp.155-164 , 1994.
46.Zhigang Wei ,Jilin Yu , “Influence of microstructure on adiabatic shear localization of pre-twisted tungsten heavy alloys” , International Journal of Impact Engineering , 24 , pp.747-758 , 2000.
47.Dong-Kuk Kim ,Sunghak Lee , “Microstructureal study of adiabatic shear bands formed by high-speed impact in a tungsten heavy alloy penetrator” , Materials Science and Engineering , A249 , pp.197-205 , 1998.
48.Y. B. Xu ,Y. L. Bai , “Formation, microstructure and development of the localized shear deformation in low-carbon steel” , Acta Mater. , Vol.44 , No.5 , pp.1917-1926 , 1996.
49.Chang Gil Lee ,Woo Jil Park , “Microstructural Development of Adiabatic Shear Bands Formed By Ballistic Impact in a WELDALITE 049 Alloy” , Metalurgical and Materials transactions A , Feb. , pp.477-483 , 1998.
50.范吟傑 , “AISI304不銹鋼TIG銲接後熱處理機械性質研究” , 國立台灣師範大學工業教育學系碩士班碩士論文” , 民89.06.
51.曾光宏 ,“不銹鋼銲件變形與殘留應力之研究” , 國立交通大學機械工程研究所博士論文 , 民90.06.
52.R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Processes”, Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, pp. 22-26, 1980.
53.U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
54.U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression”, Exp. Mech., Vol. 3, pp. 81-88, 1983.
55.M. A. Meyers, “Elastic Waves”, Dynamics Behavior of Materials, pp. 23-65, 1994.
56.J. D. Campbell, “Dynamic Plasticity-Macroscopic and Microscopic Aspects”, Mat. Sci. Eng., Vol. 12, pp. 3-21, 1973.
57.D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys”, Vol. III, ASM, pp. 951, 1970.
58.J. D. Campbell and W. G. Ferguson, “Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel”, Phil. Mag., Vol. 21, pp. 63-82, 1970.
59.A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear”, Exp. Mech., Vol. 16, pp. 281-290, 1976.
60.J. Harding and J. Huddart, “The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain”, Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
61.A. Seeger, “Dislocation and Mechanical Properties of Crystals”, The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
62.U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum”, J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
63.H. Conrad, “Thermally Activated Deformation of Metals”, Journal of Metals, Vol. 16, pp. 582-588, 1964.
64.W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates”, J. Appl. Phys., Vol. 38, No. 4, pp. 1863-1869, 1967.
65.J. D. Campbell and A. R. “Dowling, Behaviour of Materials Subjected to Dynamic Incremental Shear Loading”, J. Mechanics Physics Solids, Vol. 18, pp. 43-63, 1970..
66.J. Harding, “The Effect of High Strain Rate on Material Properties”, Materials at High Strain Rates, pp. 133-186, 1987.
67.Y. Bai, B. Dood, Adiabatic Shear Localization, Pergamon Press, pp.102, 1992.
68.Y. Bai, B. Dood, Adiabatic Shear Localization , Pergamon Press, pp.108, 1992.
69.V. V. Sokolovsky, Priskl. Mat Mekh., Vol. 12, pp. 261-281, 1948.
70.T. Vinh, M. Afzali and A. Roche, “Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate”, Mechanical Behavior of Materials, Vol. 2, pp. 633-642, 1979.
71.J. Duffy, Proc. “Workshop on Shear Localization”, Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
72.H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth”, Int. J. Impact Eng., Vol. 8, pp. 1-13, 1989.
73.H. Kobayashi and B. Dodd, “Formation of Adiabatic Shear Bands in Steel and Titanium Twisted at Dynamic Rates”, J. Jpn. Soc. Technol. Plast., Vol. 29, pp. 1152-1158, 1988.
74.F. J. Zerilli and R. W., Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, J. Appl. Phys., Vol. 61, pp. 1816-1825, 1987.
75.R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure Shear Impact and Dynamic Viscoplastic Response of Metals”, Mechanics of Materials: an International Journal, Vol. 4, pp.375-385, 1985.
76.W. Roberts, “Dynamic Changes That Occur During Hot Working and Their Significance Regarding Microstructural Development and Hot Workability, Deformation, Processing and Structure”, American Society for Metals, Metals Park, Ohio, pp. 109-184, 1984.
77.Kenneth Easterling , Introduction to the physical metallurgy of welding, pp.164 , second edition.
78.Sindo Kou , Welding Metallurgy, Wiley-Interscience Publication , pp.249.
79.陳宏志 , 銲接結構強度學 , pp.99 , 民84.03 , 復文圖書出版社