簡易檢索 / 詳目顯示

研究生: 卓英吉
Chuo, Ying-Chi
論文名稱: 直接噴射注油引擎燃燒與污染排放之數值模擬研究
Numerical Studies on Combustion and Emission in Direct-Injection Engines
指導教授: 江滄柳
Jiang, Tsung Leo
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 192
中文關鍵詞: 污染數值模擬直接噴射注油燃燒引擎
外文關鍵詞: combustion, engine, emission, numerical studies, direct-injection
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文進行直接噴射注油引擎燃燒室中之噴霧燃燒現象與污染排放數值模擬研究。所採用之數值程式為KIVA-3V,並且進行多項之物理機構模式之改進,包括:能較準確預測低溫化學反應機制之Shell點火模式、探討燃油噴霧化及空氣動力破裂機制之修正參數後之TAB 模式與本研究中提出之TAB-C噴霧霧化物理模式;並且透過相關實際噴霧室與引擎之實驗數據驗證,以探討其應用於實際噴射注油引擎噴霧燃燒預測之可行性。預測之點火延遲、熱釋放率、壓力變化及噴霧穿透長度等,皆與實驗結果相當吻合。
      於針對不同型式柴油引擎進行噴霧模式及其預測之噴霧型態對燃燒過程之影響研究可發現,對原始TAB液滴霧化模式進行參數調整( )以改變油滴破裂時間,可改進原有TAB模式對噴霧型態之預測準確度。參數 之增加會造成油滴破裂時間縮短,進而使其燃油噴霧型態受到引擎缸內強烈流場影響,造成壁濕、噴霧穿透長度不足等現象,而影響油氣混合與充氣利用,導致燃燒效能不佳。經由與實驗之缸內壓力、熱釋放率、噴霧穿透長度驗證後,本研究最後對於不同引擎提出個別之最佳噴霧模式參數值。
      所提出之TAB-C液滴霧化模式進一步考量不同霧化機制下之液滴破裂時間,並於噴霧室與實際柴油引擎操作條件下,連同原始之TAB模式及採行 參數修正之TAB模式進行驗證。計算結果顯示出本研究所提出之TAB-C液滴霧化模式較原始、以及修正 參數之TAB模式對於噴霧穿透長度、液滴粒徑、與柴油引擎燃燒過程展現出更優越之模擬能力。此TAB-C 霧化模式亦針對一適用於直接噴射注油火花點火汽油引擎之壓力渦漩式噴嘴產生之空心錐狀噴霧進行模擬驗證,經與實驗量測之噴霧穿透長度、液滴粒徑比較後,更進一步證明此模式對於廣泛之噴霧種類應用具有優良之預測能力。
      於不同之空氣燃油比條件下,包含於進氣行程與壓縮行程注油兩種注油策略之直接噴射注油火花點火汽油引擎之燃燒過程已成功地予以模擬。藉由評估不同注油正時(SOI)對點火前之汽缸內氣相/燃油噴霧交互作用顯示出,直接燃油噴注有助於提升汽缸內流場特性,其對於油氣混合效率與成功燃燒與否有相當大之影響。此外,由檢視燃燒過程中之不同階段:延遲期與壓力迅速上升期行為,與峰值壓力出現時機與大小,本研究針對所概念性探討之直接噴射注油火花點火汽油引擎提出:SOI=150° ATDC之進氣行程注油,適用於富油、正規及貧油之燃燒;SOI=300° ATDC之壓縮行程注油,適用於空油比大於20之極貧油燃燒。而所預測之空油比及注油正時對氮氧化物生成之趨勢,則與文獻相當一致。最後,另針對直接噴射注油火花點火汽油引擎於操作條件改變時,燃油噴霧參數之動態變化對引擎燃燒效能之影響進行研究探討,藉以了解引擎運轉條件改變時之噴霧參數動態變化,而有助於直接噴射火花點火汽油引擎動態噴油嘴之設計及開發。

      This study includes numerical investigations of direct-injection engine spray combustion and emission. The results contribute to the development of a predictive model based on the KIVA-3V code for direct-injection engine combustion computations. The model incorporates tailored TAB models, the Shell ignition model and other numerical improvements in the KIVA-3V code.
      The diesel spray combustion processes have been successfully simulated for both Caterpillar and Cummins diesel engines. Good levels of agreement in cylinder pressures, heat release rate data, and spray tip penetration lengths were obtained. Spray characteristics affected by the model constant of the modified TAB model and simulated combustion processes were examined with detailed two-phase flow fields presented. In comparison with experimental data, it is confirmed that the spray combustion can be well simulated using the modified TAB model together with the Shell ignition model, provided the model constant is appropriately selected (Caterpillar: ; Cummins: ).
      A tailored TAB model (the TAB-C Model), based on the experimental breakup time correlation, was proposed in the present study. By considering different breakup times under distinct breakup regimes, the TAB-C model is capable to capture the transient breakup behaviors of the droplet. This predictive model demonstrates its superiority over the original TAB model and the TAB model with a modification to the constant for the predictions of the spray and combustion characteristics of a spray bomb test and two practical diesel engines. The proposed TAB-C breakup model moreover demonstrates a good capability in simulating the pressure-swirl hollow-cone spray with a lower injection pressure for a direct-injection spark-ignition (DISI) engine application.
      The DISI gasoline engine combustion processes have been successfully investigated for different injection strategies under various fuel richness conditions using the improved KIVA-3V code in the present study. Effects of injection timings as well as A/F ratios on combustion performance and NO emission are examined. Optimal injection timings for different operating conditions are suggested. The early injection with SOI at 150° ATDC is optimal for operating at fuel rich (A/F=13.2, 14.7) and fuel lean (A/F=20) conditions. The late injection with SOI at 300° ATDC is optimal for operating at very lean (A/F=30) and ultra lean (A/F=40,50) conditions. The overall combustion performance and the NO emission behavior are shown affected by both the variation of injection timing as well as the A/F ratio. Qualitative agreements of NO predictions with literature reports were obtained. Based on the simulated results, an operating mode is suggested for the operation mode transition. The spray parameters including the injection velocity profile and duration, the spray cone angle, and the droplet size have demonstrate their significant influences on the in-cylinder gas-fuel interaction, mixture preparation, and the combustion processes.

    ABSTRACT i CONTENTS iii LIST OF TABLES vi LIST OF FIGURE vii NOMENCLATURE xiv CHAPTER I INTRODUCTION 1   1.1 Background 1     1.1.1 Diesel Engine 2     1.1.2 Direct-Injection Spark-Ignition Gasoline Engine 7   1.2 Motivation and Objective 12   1.3 Dissertation Outline 14 II MATHEMATICAL DESCRIPTION 15   2.1 Assumptions 15   2.2 Governing Equation of Gas Phase and Droplet Phase 16     2.2.1 Governing Equation of Gas Phase 16     2.2.2 Governing Equation of Droplet Phase 20     2.2.3 Boundary Conditions 24 III NUMERICAL APPROACH 27   3.1 Introduction 27   3.2 Numerical Method 27   3.3 Improved Submodels 29     3.3.1 Ignition Model 29     3.3.2 NO Emission 32   3.4 Numerical Modifications 33     3.4.1 Parcel Momentum Coupling 33 IV DIESEL ENGINE COMBUSTION 35   4.1 Chemical Kinetics 35   4.2 Breakup Model Constant Effect 37   4.3 Results and Discussion 39     4.3.1 The Caterpillar Diesel Engine 40     4.3.2 The Cummins Diesel Engine 43   4.4 Concluding Remarks 47 V IMPROVEMENT ON DROPLET BREAKUP MODEL 49   5.1 Introduction 49   5.2 Proposed TAB-Calibrated Model 51   5.3 Results and Discussion 54     5.3.1 Spray Bomb Test 54     5.3.2 The Caterpillar Diesel Engine Case 56     5.3.3 The Cummins Diesel Engine 57     5.3.4 Pressure-Swirl Hollow-Cone Spray 58   5.4 Concluding Remarks 59 VI SIMULATIONS FOR A DIRECT-INJECTION SPARK-IGNITION   GASOLINE ENGINE 61   6.1 Fuel-Air Interaction 61   6.2 Firing Engine Investigation 64   6.3 Characteristics of Combustion 69   6.4 NO Emission 76   6.5 Engine Operating Mode and Fuel Injection Strategies 80   6.6 Dynamic Spray Parameters 80 VII CONCLUSIONS AND RECOMMENDATIONS 85   7.1 Conclusions 85   7.2 Recommendations for Future Work 86 REFERENCES 88 APPENDIX A 96 APPENDIX B 98 TABLES 99 FIGURES 105 PUBLICATION LIST 191 VITA 192

    Arcoumanis, C., Gaivaises, M., and French, B., 1997, “Effect of Fuel Injection Processes on the Structure of Diesel Sprays,” SAE Technical Paper 970799.

    Arcoumanis, C., Flora, H., Gaivaises, M., Kampanis, M., and Horrocks, R., 1999, “Investigations of Cavitation in a Vertical Multi-Hole Injector,” SAE Technical Paper 1999-01-0524.

    Allocca, L., Belardini, P., Bertoli, C., Corcione, F. E., and De Angelis, R., 1992, “Experimental and Numerical Analysis of a Diesel Spray, SAE Technical Paper, 920576.

    Allocca, L., Corcione, F. E., Fusco, A., Papetti, F., and Succi, S., 1994, “Modeling of Diesel Spray Dynamics and Comparison with Experiments,” SAE Technical Paper 941895.

    Amsden, A. A., 1993, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Lab., LA-12503-MS.

    Amsden, A. A., 1997, “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves”, Los Alamos National Lab., LA-13313-MS.

    Amsden, A. A., O’Rourke, P. J., Butler, T. D., 1989, “KIVA-II – A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Lab., LA-11560-MS.

    Anderson, R. W., Yang, J., Brehob, D. D., Vallance, J. K., and Whiteaker, R. M., 1996, “Understandins the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion System: An Analytical and Experimental Investigation,” SAE Technical Paper 962018.

    Beatrice, C., Belardini, P., Bertoli, C., Cameretti, M. C., and Cirillo, N. C., 1995, “Fuel Jet Models for Multidimensional Diesel Combustion Calculation: An Update,” SAE Technical Paper 950086.

    Belardini, P., Bertoli, C., and Cameretti, M. C., 1998, “Numerical Analysis of the Influence of the Jet Breakup Model Formulation on Diesel Engine Combustion Computations,” Atomization and Sprays, 8, 123-154.

    Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, “Transport Phenomena,” John Wiley and Sons.

    Bowman, C. T., 1975, “Kinetics of Pollutant Formation and Destruction in Combustion,” Prog. Energy Combust. Sci., 1, 33-45.

    Chuo, Y. C. and Jiang, T. L., 1999, “Effects of Injection Timing on Fuel-Air Interaction in a Direct Injection Gasoline Engine,” The Sixth National Conference on Computational Fluid Dynamics, Taitung, August.

    Chuo, Y. C. and Jiang, T. L., 2000a, “Effects of Injection Timing on Fuel-Air Interaction in a Direct Injection Gasoline Engine,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, 32, No.1, 65-72.

    Chuo, Y. C. and Jiang, T. L., 2000b, “Multidimensional Modeling for Diesel and DISI Gasoline Engines,” The Seventh National Conference on Computational Fluid Dynamics, Kenting, August.

    Chuo, Y. C. and Jiang, T. L., 2001, “Numerical Investigations of Effects of Breakup Time on the Combustion Characteristics of Diesel Engines,” Atomization and Sprays (submitted).

    Chuo, Y. C. and Jiang, T. L., 2002a, “Numerical Simulation of Spray and Combustion Characteristics of Direct-Injection Engines,” 2002「民航學會/航太學會/燃燒學會」學術聯合會議, 燃燒學會.

    Chuo, Y. C. and Jiang, T. L., 2002b, “Modeling the Spray and Combustion Characteristics of Diesel Engines Using the TAB-C Model,” Combustion Sci. Technol. (submitted).

    Coleman, G. N. and Mansour, N. N., 1991, “Modeling the Rapid Spherical Compression of Isotropic Turbulence,” Phys. Fluid A, 3.

    Curtis, E. W., Uludogan, A., and Reitz, R. D., 1995, “A New Hgih Pressure Droplet Vaporization Model for Diesel Engine Modeling,” SAE Paper 952431.

    Dec, J. E., 1997, “A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging,” SAE Technical Paper 970873.

    Dodge, L. G., 1996, ” Fuel Preparation Requirements for Direct-Injected Spark-Ignition Engines,” SAE Paper 962015.

    Espey, C., Dec, J. E., Litzinger, T. A., and Santavicca, D. A., 1997, “Planar Laser Rayleigh Scattering for Quantitative Vapor-Fuel Imaging in a Diesel Jet,” Combust. Flame, 109, 65-86.

    Fan, L. and Reitz, R. D., 2000, “Spray and Combustion Modeling in Gasoline Direct-Injection Engines,” Atomization and Sprays, 10, 219-249.

    Fansler, T. D., French, D. T. and Drake, M. C., 1995, “Fuel Distribution in a Firing Direct-Injection Spark-Ignition Engine Using Laser-Induces Fluorescence Imaging,” SAE Paper 950110.

    Fuchs, T. R. and Rutland, C. J., 1995, “Intake Flow Effects on Combustion and Emissions in a Diesel Engine,” SAE Paper 950508.

    Ghandhi, J. B. and Bracco, F. V., 1996, “Mixture Preparation Effects on Ignition and Combustion in a Direct-Injection Spark-Ignition Engine,” SAE Paper 962013.

    Golovitchev, V., Nordin, N., Jarnicki, R., and Chomiak, J., 2000, “3-D Diesel Spray Simulation Using a New Detailed Chemistry Turbulent Combustion Model,” SAE Paper 00FL-447.

    Gülder, Ö. L., Smallwood, G. J., and Snelling, D. R., 1992, “Diesel Spray Structure Investigation by Laser Diffraction and Sheet Illumination,” SAE Technical Paper 920577.

    Habchi, C., Verhoeven, D., Huu, C. H., Lambert, L., Vanhemelryck, J. L., and Baritaud, T., 1997, “Modeling Atomization and Break Up in High-Pressure Diesel Sprays,” SAE Technical Paper 970881.

    Halstead, M., Kirsh, L. and Quinn, C., 1977, “The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures – Fitting of a Mathematical Model,” Combust. Flame, 30, 45-60.

    Han, Z. and Reitz, R. D., 1995, “Turbulence Modeling of Internal Combustion Engines Using RNG k-e Models,” Combustion Sci. Technol. , 106, 267-295.

    Han, Z., Fan, L. and Reitz, R. D., 1997a, ”Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” SAE Paper 970884.

    Han, Z., Parish, S., Farrell, P. V. and Reitz, R. D., 1997b, “Modeling Atomization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays,” Atomization and Sprays, 7, pp. 663-684.

    Han, Z., Reitz, R. D., Claybaker, J., Rutland, C. J., Yang, J. and Anderson, R. W., 1996, “Modeling the Effects of Intake Flow Structures on Fuel/Air Mixing in a Direct-Injected Spark-Ignition Engine,” SAE Paper 961192.

    Han, Z., Reitz, R. D., Yang, J. and Anderson, R. W., 1997c, “Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” SAE Paper 970625.

    Heywood, J. B., 1988, “Internal Combustion Engine Fundamentals,” McGraw-Hill.

    Hirt, C. W., Amsden, A.A., and Cook, J. L., 1974, “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speed,” J. Comput. Phys., 14, 227.

    Hou, Z. -X. and Abraham, J., 1995, “Three-Dimensional Modeling of Soot and NOx in a Direct-Injection Diesel Engine,” SAE Technical Paper 950608.

    Hou, Z. -X., Abraham, J., and Siebers, D. L., 1994, “Three-Dimensional Computations of Diesel Sprays in a Very High Pressure Chamber,” SAE Technical Paper 941896.

    Huh, K. Y. and Gosman, A. D., 1991, “A Phenomenological Model of Diesel Spray Atomization,” Proceedings of the International Conference on Multiphase Flows.

    Jackson, N. S., Stokes, J., and Lake, T. H., 1997, “Stratified and Homogeneous Charge Operation for the Direct Injection Gasoline Engine – High Power with Low Fuel Consumption and Emissions,” SAE Technical Paper 970543.

    Jeong, K. S., Ohm, Y., Yoon, Y., and Jeung, I. S., 1998, “Initial Flame Development under Fuel Stratified Conditions,” SAE Technical Paper 981429.

    Kong, S. C. and Reitz, R. D., 1993, “Multidimensional Modeling of Diesel Ignition and Combustion Using a Multistep Kinetics Model,” Journal of Engineering for Gasturbines and Power, 115, 781-789.

    Kong, S. C., Han, Z. and Reitz, R. D., 1995, “The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulations,” SAE Technical Paper 952078.

    Kume, T., Iwamoto, Y., Iida, K., Murakami, M., Akishino, K., and Ando, H., 1996, “Combustion Control Technologies for Direct Injection SI Engine,” SAE Technical Paper 960600.

    Lake, T .H., Sapsford, S. M., Stokes, J., and Jackson, N. S., 1996, “Simulation and Development Experience of a Stratified Charge Gasoline Direct Injection Engine,” SAE Paper 962014.

    Lamb, H., 1932, Hydrodynamics, Dover Publications.

    Law, C. K. and Chung, S. H., 1980, ”An Ignition Criterion for Droplets in Sprays,” Combustion Sci. Technol., 22, 17-26.

    Lee, T. -W. and Mitrovic, A., 1996, “Liquid Core Structure of Pressure-Atomized Sprays via Laser Tomographic Imaging,” Atomization and Sprays, 6, 111-126.

    Liu, A. B., Mather, D., and Reitz, R. D., 1993, “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,” SAE Technical Paper 930072.

    MacInnes, J. M. and Bracco, F. V., 1994, “Radial Distribution of Drop Size in Steady Full-Cone Sprays,” Atomization and Sprays, 4, 677-694.

    Magnussen, B. F. and Hjertager, B. H., 1977, “On Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion,” 16th Symposium (International) on Combustion, 719-729.

    Maricq, M. M., Podsiadlik, D. H., Brehob, D. D., and Haghgooie, M., 1999, “Particulate Emissions from a Direct-Injection Spark-Ignition (DISI) Engine,” SAE Technical Paper 1999-01-1530.

    Matsushita, S., Nakanishi, K., Gohno, T., and Sawada, D., 1996, “Mixture Formation Process and Combustion Process of Direct Injection S.I. Engine,” Proceedings of JSAE, 965, 101-104.

    Mawid, M. and Aggarwal, S. K., 1989, “Chemical Kinetics Effects on the Ignition of a Fuel Droplet,” Combustion Sci. Technol., 65, 137-150.

    McLandress, A., Emerson, R., McDowell, P., and Rutland, C. J., 1996, “Intake and In-Cylinder Flow Modeling Characterization of Mixing and Comparison with Flow Bench Results,” SAE Paper 960635.

    Natarajan, B. and Bracco, F. V., 1984, “On Multidimensional Modeling of Auto-Ignition in Spark-Ignition Engines,” Combust. Flame, 57, 179-197.

    O’Rourke, P. J. and Amsden, A. A., 1987, “The TAB Method for Numerical Calculation of Spray Droplet Breakup,” SAE Technical Paper 872089.

    O’Rourke, P. J. and Amsden, A. A., 1996, “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” SAE Technical Paper 961961.

    O’Rourke, P. J. and Amsden, A. A., 2000, “A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model,” SAE Technical Paper 2000-01-0271.

    O’Rourke, P. J., 1981, “Collective Drop Effects in Vaporizing Liquid Sprays,” Ph.D. Thesis 1532-T, Princeton University.

    Patterson, M. A. and Reitz, R. D., 1998, “Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission,” SAE Technical Paper 980131.

    Pilch, M. and Erdman, C. A., 1987, “Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop,” Int. J. Multiphase Flow, 13, 741-757.

    Reitz, R. D., 1987, “Modeling Atomization Processes in High-Pressure Vaporizing Sprays,” Atomisation and Spray Technology, 3, 309-337.

    Reynolds, W. C., 1980, “Modeling of Fluid Motion in Engines – A Introductory Overview,” Combustion Modeling in Reciprocating Engines (Eds), Plenum Press.

    Ricart, L. M., Xin, J., Bower, G. R., and Reitz, R. D., 1997, “In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine,” SAE Technical Paper, 971591.

    Rotondi, R., Bella, G., Grimaldi, C., and Postrioti, L., 2001, “Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model,” SAE Technical Paper 2001-01-1070.

    Schapertons, H. and Lee, W., 1985, “Multidimensional Modelling of Knocking Combustion in SI Engines,” SAE Technical Paper 850502.

    Schmidt, D. P., Rutland, C. J., Corradini, M. L., Roosen, P., and Genge, O., 1999, “Cavitation in Two-Dimensional Asymmetric Nozzles,” 1999, SAE Technical Paper 1999-01-0518.

    Shimotani, K., Oikawa, K., Horada, O., and Kagawa, Y., 1995, “Characteristic of Gasoline In-Cylinder Direct Injection Engine,” Proceedings of the Internal Combustion Engine Symposium, 289-294.

    Stanglmaier, R. H., Hall, M. J., and Matthews R. D., 1998, “Fuel-Spray/Charge Motion Interaction within the Cylinder of a Direct-Injection, 4-valve, SI Engine,” SAE Paper 980155.

    Stanton, D. W. and Rutland, C. J., 1996, “Modeling Fuel Film Formation and Wall Interaction in Diesel Engines,” SAE Paper 960628.

    Su, T. F., Patterson, M. A., Reitz, R. D., and Farrell, P. V., 1996, “Experimental and Numerical Studies of High Pressure Multiple Injection Sprays,” SAE Paper 960861.

    Takenaka, Y., Kudo, Y., Kakegawa, T., Shiozaki, T., and Aoyagi, Y., 1995, “The Spray Models and Their Influence on Ignition,” SAE Technical Paper 950279.

    Yang, H. C., Ryou, H. S., Jeong, Y. T., and Choi, Y. K., 1996, “Spray Characteristics in a Direct-Injection Diesel Engine,” Atomization and Sprays, 6, 95-109.

    Yule, A. J. and Salter, D. G., 1994, “A Conductivity Probe Technique for Investigating the Breakup of Desel Sprays,” Atomization and Sprays, 4, 41-63.

    Yule, A. J. and Watkins, A. P., 1991, “Measurement and Modeling of Diesel Sprays,” Atomization and Sprays, 1, 441-465.

    Zhao, F. Q., Lai, M. -C., and Harrington, D. L., 1997, “A Review of Mixture Preparation and Combustion Cobtrol Strategies for Spark-Ignition Direct-Injection Gasoline Engines,” SAE Paper 970627.

    Zhao, F. Q., Lai, M. -C., and Harrington, D. L., 1999, “Automotive Spark-Ignited Direct-Injection Gasoline Engines,” Prog. Energy Combust. Sci., 25, 437-562.

    Zhao, F.-Q., Yoo, J.-H., Liu, Y. and Lai, M.-C., 1996, “Spray Dynamics of High Pressure Fuel Injectors for DI Gasoline Engines,” SAE Paper 961925.

    下載圖示 校內:2003-07-11公開
    校外:2003-07-11公開
    QR CODE