簡易檢索 / 詳目顯示

研究生: 吳晉祥
Wu, Jin-Shang
論文名稱: 心跳變異性、自發性壓力反射敏感度與葡萄糖耐受不良之相關性研究
Heart Rate Variability and Spontaneous Baroreflex Sensitivity in Glucose Intolerance
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 58
中文關鍵詞: 心跳變異性葡萄糖耐受異常壓力反射敏感度糖尿病
外文關鍵詞: diabetes mellitus, baroreflex sensitivity, heart rate variability, impaired glucose tolerance
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   當心跳變異性(heart rate variability)或壓力反射敏感度(baroreflex sensitivity)減少時,即使沒有自主神經病變的臨床症狀,其死亡的危險性仍會升高。本篇研究在於探討心跳變異性與葡萄糖耐受不良(glucose intolerance)之相關性,並且在正常血糖、葡萄糖耐受異常(impaired glucose tolerance)與糖尿病三組受檢者中作自發性壓力反射分析與Valsalva測驗對於壓力反射敏感度之比較。
      我們選取83位糖尿病病人、經年齡配對之83位葡萄糖耐受異常及166位正常血糖之受檢者,每位受檢者皆接受以Colin BP-508 Automatic BP monitor system作5分鐘之心跳及血壓測量的紀錄,並作2次的Valsalva測驗。心跳變異性的時域分析包括RR時間間距的標準差(SDNN)及相鄰RR時間間距之差的均方根值(RMSSD),頻域分析則以快速Fourier轉換作頻譜分析,低頻為0.04 – 0.15 Hz、高頻為0.15 – 0.40Hz;另外也作收縮壓的頻域分析。在壓力反射分析上,Valsalva比值小於1.2視為異常;自發性壓力反射之 spectral a coefficient為RR時間間距與收縮壓在低頻之power比值的平方根。
      結果顯示與正常血糖組比較,葡萄糖耐受異常與糖尿病這兩組的時域分析(包括SDNN與RMSSD)及頻域分析(高、低頻的power)均有明顯的減少;但在低、高頻power的比值及收縮壓的頻域分析於正常血糖、葡萄糖耐受異常與糖尿病三組間則無明顯統計學上之差異。在壓力反射分析方面,Valsalva比值異常(小於1.2)之比率在正常血糖、葡萄糖耐受異常與糖尿病三組分別為1.8、6.0、及12.3% (p=0.001);經調整其他因子後,Valsalva比值異常與糖尿病仍有獨立的相關性,但與葡萄糖耐受異常則無明顯獨立的相關性。在自發性壓力反射方面,葡萄糖耐受異常與糖尿病組比正常血糖組有較低的的spectral a coefficient,經調整其他因子後,spectral a coefficient減少的現象仍然存在。因此本篇的結論為葡萄糖耐受異常與糖尿病者之心跳變異性比血糖正常者有減少的現象,但血壓變異性則與血糖正常者無明顯差別。就壓力反射敏感度與葡萄糖耐受不良的相關性而言,spectral a coefficient與葡萄糖耐受不良的相關性比Valsalva ratio為佳。

      Reduced heart rate variability (HRV) and baroreflex sensitivity (BRS), even in subclinical state, increases the risk of mortality. The aims of this study are to clarify the relationship between HRV and glucose intolerance and also to compare the spontaneous BRS analysis and Valsalva test for assessment of baroreflex function in subjects with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and diabetes mellitus (DM).
      Eighty-three DM patients, 83 age-matched IGT and 166 NGT subjects were recruited. Recordings of the heart rate and blood pressure signals with Colin BP-508 Automatic BP monitor system were collected for 5 minutes and Valsalva test was performed twice after then. Standard deviation of RR interval (SDNN), root mean square of successive differences (RMSSD), and low (LF: 0.04–0.15 Hz) and high frequency (HF: 0.15–0.4 Hz) components derived from spectral analysis with fast Fourier transformation were calculated. Impaired Valsalva ratio was defined as <1.2. Spontaneous BRS were determined by spectral a coefficient method, i.e. square root of the ratio between the power of RR interval and the power of systolic blood pressure (SBP) in the LF region.
      SDNN, RMSSD, HF and LF power spectra of RR interval were reduced in both DM and IGT subjects, as compared with NGT subjects. However, LF power/ HF power, SBP variability, and Valsalva ratio were not significantly different among subjects with NGT, IGT, and DM in multiple regression analysis. When compared to NGT subjects, both the DM and IGT subjects had a lower spectral a coefficient. The diabetic patients, not the IGT subjects, suffered a higher prevalence of impaired Valsalva ratio than NGT subjects. In conclusion, impaired HRV in time & frequency domain, but not the SBP variability, are found in both DM and IGT subjects. Spontaneous baroreflex analysis with spectral a coefficient is more correlated to subjects with glucose intolerance as compared with Valsalva ratio.

    Abstract………………………………………………………………………………………… i Acknowledgement……………………………………………………………………………… iii Table of Contents…………………………………………………………………………… iv List of Tables………………………………………………………………………………… v List of Figures……………………………………………………………………………… vi Chapter 1 Introduction………………………………………………………………………1 1.1 Background ……………………………………………………………………………… 1 1.2 Heart Rate Variability………………………………………………………………… 3 1.3 Baroreflex Sensitivity………………………………………………………………… 9 1.4 Glucose Intolerance and Cardiovascular Autonomic Neuropathy……………… 14 1.5 Motivation and the Aims of This Study…………………………………………… 15 Chapter 2 Subjects and Methods………………………………………………………… 16 2.1 Subjects……………………………………………………………………………………16 2.2 Measurements of Clinical Characteristics…………………………………………16 2.3 Noninvasive Measurements for Signals of Heart Rate and Blood Pressure in Supine Position and Valsalva Meneuver………………………………………………… 17 2.4 Signals Acquiring, Processing and Spectral Analysis for Heart Rate and Blood Pressure Variability…………………………………………………………………………21 2.5 Definition of Clinical Measurements……………………………………………… 25 2.6 Statistical Analysis……………………………………………………………………25 Chapter 3 Results……………………………………………………………………………27 3.1 Comparisons of Clinical Characteristics among Subjects with NGT, IGT, and DM…………………………………………………………………………………………………27 3.2 Comparisons of HRV and SBP Variability among Subjects with NGT, IGT, and DM…………………………………………………………………………………………………27 3.3 Comparisons of Valsalva Ratio and Spontaneous BRS a Coefficient among Subjects with NGT, IGT, and DM……………………………………………………………36 Chapter 4 Discussions…………………………………………………………………… 40 4.1 Methodological issues for HRV and Spontaneous BRS Measures…………………40 4.2 HRV and Glucose Intolerance………………………………………………………… 42 4.3 BRS and Glucose Intolerance………………………………………………………… 44 4.4 Limitation of Our Study……………………………………………………………… 46 4.5 Conclusions and Perspectives…………………………………………………………47 References………………………………………………………………………………………49 Appendix…………………………………………………………………………………………54

    1. Department of Health, Executive Yuan, Taiwan, ROC. Taiwan Area Main Causes of Death (2003), Causes of Death Statistics. http://www.doh.gov.tw/statistic/data/死因摘要/
    2. American Diabetes Association. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 20:1183-1197,1997.
    3. Baron AD. Impaired glucose tolerance as a disease. Am J Cardiol. 88:16H-19H, 2001
    4. Levick JR. Cardivascular Receptors, Reflexes and Central Control. In An Introduction to Cardiovascular Physiology. 4th ed. Edward Arnold, London. p278-297,2003.
    5. Pang CCY. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 90:179-230,2001.
    6. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Heethaar RM, Stehouwer CD. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care. 24:1793-1798,2001.
    7. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 26:1895-1901,2003.
    8. Curb JD, Rodriquez BL, Burchfiel CM, Abbott RD, ChiuD, Yano K. Sudden death, impaired glucose tolerance, and diabetes in Japanese American men. Circulation. 91:2591–2595,1995.
    9. Moss SE, Klein R, Klien BEK, Cause-specific mortality in a population-based study of diabetes. Am J Publ Health. 81:1158-1162,1991.
    10. Gerritsen J, Dekker JM, TenVoorde BJ, Bertelsmann FW, Kostense PJ, Stehouwer CD, Heine RJ, Nijpels G, Heethaar RM, Bouter LM. Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia. 43:561-570,2000.
    11. Tuomilehto J, Schranz A, Aldana D, Pitkaniemi J. The effect of diabetes and impaired glucose tolerance on mortality in Malta. Diabet Med. 11:170–176,1994.
    12. Singh JP, Larson MG., O'Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol. 86:309-312,2000.
    13. Frattola A, Parati G, Gamba P, Paleari F, Mauri G, Di Rienzo M, Castiglioni P, Mancia G. Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia. 40:1470-1475,1997.
    14. Weston PJ, James MA, Panerai RB, McNally PG, Potter JF, Thurston H. Evidence of defective cardiovascular regulation in insulin-dependent diabetic patients without clinical autonomic dysfunction. Diabetes Res Clin Pract. 42:141-148,1998.
    15. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D. Determinants of heart rate variability. J Am Coll Cardiol. 28:1539–1546,1996.
    16. Wawryk AM, Bates DJ, Couper JJ. Power spectral analysis of heart rate variability in children and adolescents with IDDM. Diabetes Care. 20:1416–1421,1997.
    17. Liao D, Cai J, Brancati FL, Folsom A, Barnes RW, Tyroler HA, Heiss G. Association of vagal tone with serum insulin, glucose, and diabetes mellitus— The ARIC Study. Diabetes Res Clin Pract. 30:211–221,1995.
    18. Pagani M, Malfatto G, Pierini S, Casati R, Masu AM, Poli M, Guzzetti S, Lombardi F, Cerutti S, Malliani A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst. 23:143-153,1988.
    19. Bellavere F, Balzani I, De Masi G, Carraro M, Carenza P, Cobelli C, Thomaseth K. Power spectral analysis of heart-rate variations improves assessment of diabetic cardiac autonomic neuropathy. Diabetes. 41:633-640,1992.
    20. Smith S. Reduced sinus arrhythmia in diabetic autonomic neuropathy: diagnostic value of an age related normal range. BMJ. 285:1599-1601,1982.
    21. Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 18:7-19,2000.
    22. Karemaker JM. Analysis of Blood Pressure and Heart Rate Variability. In Clinical Autonomic Disorder: Evaluation and Management. 2nd ed. Low PA, Ed. Philadelphia, Lippincott-Raven Publishers, p.309-322,1997.
    23. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 29:437-445,1971.
    24. Chess GF, Tam RM, Calaresu FR. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol. 228:775-780;1975.
    25. Freeman R. Noninvasive Evaluation of Heart Rate Variability – The Time Domain. In Clinical Autonomic Disorder: Evaluation and Management. 2nd ed. Low PA, Ed. Philadelphia, Lippincott-Raven Publishers, p.297-307,1997.
    26. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol. 241:H620-H629,1981.
    27. Kay SM, Marple SL. Spectrum analysis: a modern perspective. Proc IEEE. 60:1380-1419,1981.
    28. Wheeler T, Watkins PJ. Cardiac denervation in diabetes. BMJ. 4:584-586,1973.
    29. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 213:220-222,1981.
    30. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 59:256-262,1987.
    31. Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation. 88:927-34,1993.
    32. Task Force on the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability – standards of measurement, physiological interpretation, and clinical use. Circulation. 1043-1065,1996.
    33. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 84:482-492,1991.
    34. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation. 90:1826-1831,1994.
    35. Nosaka S. Modifications of arterial baroreflexes: obligatory roles in cardiovascular regulation in stress and poststress recovery. Japanese J Physiol. 46:271-288,1996.
    36. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Heethaar RM, Stehouwer CD. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care. 24:1793-1798,2001.
    37. Pitzalis MV, Mastropasqua F, Passantino A, Massari F, Ligurgo L, Forleo C, Balducci C, Lombardi F, Rizzon P. Comparison between noninvasive indices of baroreceptor sensitivity and the phenylephrine method in post-myocardial infarction patients. Circulation. 97:1362-1367,1998.
    38. Parati G, Di Rienzo M, Mancia G. Neural cardiovascular regulation and 24-hour blood pressure and heart rate variability. Ann NY Acad Sci. 783:47-63,1996.
    39. Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G. Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats. Am J Physiol. 254:H377-H383,1988.
    40. Parlow J, Viale JP, Annat G, Hughson R, Quintin L. Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension. 25:1058-1068,1995.
    41. Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 10:538-543,1987.
    42. Di Rienzo M, Castiglioni P, Parati G, Mancia G, Pedotti A. Effects of sino-aortic denervation on spectral characteristics of blood pressure and pulse interval variability: a wide-band approach. Med Biol Eng Comput. 34:133-141,1996.
    43. Di Rienzo M, Castiglioni P, Mancia G, Parati G, Pedotti A. Critical appraisal of indices for the assessment of baroreflex sensitivity. Methods Inform Med. 36:246-249,1997.
    44. Kuller LH, Velentgas P, Barzilay J, Beauchanp NJ, O'Leary DH, Savage PJ. Diabetes mellitus: subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler Thromb Vasc Biol. 20:823-829,2000.
    45. Gabir MM, Hanson RL, Dabelea D, Imperatore G, Roumain J, Bennett PH, Knowler WC: Plasma glucose and prediction of microvascular disease and mortality: evaluation of 1997 American Diabetes Association and 1999 World Health Organization criteria for diagnosis of diabetes. Diabetes Care. 23:1113-1118,2000.
    46. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M: The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 60:108-111,2003.
    47. Spallone V, Menzinger G. Diagnosis of cardiovascular autonomic neuropathy in diabetes. Diabetes. 46 Suppl 2:S67-S76,1997.
    48. Ghugh A, Eagle KA, Methta RH. Cardiac Complications and Management. In The Evidence Base for Diabetes Care. John Wiley & Sons, Ltd, Chichester, West Sussex, England. P577-605,2002.
    49. Kahn JK, Zola B, Juni JE, Vinik AI. Decreased exercise heart rate and blood pressure response in diabetic subjects with cardiac autonomic neuropathy. Diabetes Care. 9:389-394, 1986.
    50. Rathmann W, Ziegler D, Jahnke M, Haastert B, Gries FA. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med. 10:664–671,1993.
    51. Sato T, Nishinaga M, Kawamoto A, Ozawa T, Takatsuji H. Accuracy of a continuous blood pressure monitor based on arterial tonometry. Hypertension. 21:866-874,1993.
    52. Kaufman H. Investigation of Autonomic Cardiovascular Dysfunction. In Handbook of Autonomic Nervous System Dysfunction. Korczyn AD Ed. New York, Marcel Dekker, Inc. p427-468,1995.
    53. Huikuri HV, Makikallio T, Airaksinen KE, Mitrani R, Castellanos A, Myerburg RJ. Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol. 34:1878-1883,1999.
    54. Laederach-Hofmann K, Mussgay L, Winter A, Klinkenberg N, Ruddel H. Early autonomic dysfunction in patients with diabetes mellitus assessed by spectral analysis of heart rate and blood pressure variability. Clin Physiol. 19:97-106,1999.
    55. Ewing DJ. Analysis of heart rate variability and other non-invasive tests with special reference to diabetes mellitus. In Autonomic Failure – A Textbook of Clinical Disorders of the Autonomic Nervous System. Bannister SR & Mathias CJ Ed. Oxford, Oxford University Press, p312-333,1992.
    56. The Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure: The Seventh Report of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC VII). JAMA. 289:2560-2572,2003.
    57. Paffenbarger RS, Blair SN, Lee IM, Hyde RT. Measurement of physical activity to assess health effects in free-living populations. Med Sci Sports Exerc. 25:60-70,1993.
    58. Lipsitz LA, Pluchino FC, Wei JY, Rowe JW. Syncope in institutionalized elderly: the impact of multiple pathological conditions and situational stress. J Chron Dis. 39:619-630,1986.
    59. Blackburn H, Keys A. The electrocardiogram in population studies: A classification system. Circulation. 21:1160-1175,1960.
    60. Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH. Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart. 80:156-162,1998.
    61. McLeod JG. Autonomic dysfunction in peripheral nerve disorders. Curr Opin Neurol Neurosurg. 5:476-481,1992.
    62. Bootsma M, Swenne CA, Van Bolhuis HH, Chang PC, Cats VM, Bruschke AV. Heart rate and heart rate variability as indexes of sympathovagal balance. Am J Physiol. 266:H1565–1571,1994.
    63. Osterhues HH, Grossmann G, Kochs M, Hombach V. Heart-rate variability for discrimination of different types of neuropathy in patients with insulin dependent diabetes mellitus. J Endocrinol Invest. 21:24 –30,1998.
    64. Ferrer MT, Kennedy WR, Sahinen F. Baroreflexes in patients with diabetes mellitus. Neurology. 41:1462-1466,1991.
    65. McDowell TS, Hajduczok G, Abboud FM, Chapleau MW. Baroreflex dysfunction in diabetes mellitus. II. Site of baroreflex impairment in diabetic rabbits. Am J Physiol. 266:H244-H249,1994.

    下載圖示 校內:立即公開
    校外:2004-07-14公開
    QR CODE