| 研究生: |
鄭淼晶 Chang, Mew-Jin |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備菫青石粉末及其燒結體之性質研究 Preparation of Cordierite Powder and Characterization of Cordierite Ceramics |
| 指導教授: |
雷大同
Ray, Dah-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 燒結 、菫青石 、溶膠凝膠法 、氧化鉍 |
| 外文關鍵詞: | sol-gel, sintering, Bi2O3, cordierite |
| 相關次數: | 點閱:101 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
菫青石因具有低介電常數、低熱膨脹係數、高電阻係數、高熱傳導率、高機械強度與極佳的抗熱震等優異的特性,故其用途非常廣泛,除了傳統用途如汽車用燃氣輪機的熱交換器,排氣淨化用觸媒載體等,亦極適合作為積體電路基板材料 (Integrated Circuit Substrates)。
菫青石 (Cordierite) 是MgO-Al2O3-SiO2三成份系統中的化合物,其計量組成為2MgO.2Al2O3.5SiO2。本研究將MgCl2、AlCl3及TEOS與酒精混合配製成[Mg2+] = 0.1 M、[Al3+] = 0.2 M及[Si4+] = 0.25 M之溶液並混合,再將1 M 之NH4OH以5 ml/min之速率滴入混合液中進行溶膠凝膠反應,合成菫青石之前導物粉末,並以此前導物製備菫青石粉末及燒結體。探討:(1) 溶液pH值對共沉結果及煆燒後粉末結晶相的影響;(2) 煆燒條件對菫青石粉末粒徑及燒結體的影響;(3) 燒結助劑對燒結體結晶相及對其熱電性質的影響。
根據實驗結果發現共沉pH值在9以上,反應較為完全,殘留在濾液中Mg2+、Al3+與Si4+含量大幅降低。以1400℃持溫3小時煆燒,pH 9 ~ 10之共沉粉末全部為α-菫青石。pH 9之共沉粉末以500℃持溫3小時煆燒,顆粒粒徑為18.9 nm。
比較低溫與高溫煆燒所製備之燒結體,發現前者較緻密,且其緻密化發生的溫度比高溫者低約200℃,顯示低溫煆燒對後續的燒結行為有較佳的結果。
本研究以氧化鉍 (Bi2O3) 作為燒結助劑,發現氧化鉍不但可有效降低α-菫青石結晶相析出的溫度,並可降低燒結緻密溫度。以870 ~ 970℃持溫8小時燒結,燒結體之氧化鉍添加量為15 ~ 20 wt%。熱膨脹係數為17~20 x 10-7 /℃,與矽之熱膨脹係數相配合。燒結體若無添加氧化鉍,其絕緣電阻係數比添加者低。隨氧化鉍添加量之增加,絕緣電阻係數有增加然後穩定的趨勢。本研究中所測得最佳電阻係數為4 x 1011Ωcm。
實驗結果顯示利用氧化鉍為燒結助劑,在低於1000℃的燒結溫度下得到一緻密度和熱電性質皆相當良好的燒結體。所測得最高品質因子可達10,000 ~ 20,000 (1 MHz),且於高頻率 (18 GHz) 仍具有404 ~ 620的品質因子,屬於相當優良的品質因子。
Abstract
Cordierite has low dielectric constant, low thermal expansion coefficient, high resistivity, high conductivity and good mechanical strength; it is mainly used in the fabrication of catalytic converter honeycomb supports used in automobiles, self-cleaning ovens and industrial heat exchangers for turbines. Besides, cordierite is expected to have great potential as a substrate material for integrated circuit board replacing alumina, which has a relatively low dielectric constant (~5) at the high frequency region.
Cordierite is a ternary compound of the MgO-Al2O3-SiO2 system, with the stoichiometric composition of 2MgO.2Al2O3.5SiO2. A sol-gel process was utilized to prepare low-temperature sinterable ceramics with a stoichiometric cordierite composition, in which Bi2O3 additives were incorporated to control the crystallization process and lowering the sintering temperature
In this study, ultrafine powders were precipitated by titrating NH4OH into the aqueous solution of MgCl2, AlCl3, TEOS and alcohol. The suitable pH value would be 9 and the above for the reaction to be completed. By calcining the powders, α-cordierite precursor was obtained.
Comparing the ceramic bulks prepared by low temperature calcinations (500℃) and high temperature calcinations (1400℃), the previous sample has denser structure, which means that low temperature calcinations has a better influence in sintering behavior.
The highest quality factors found in this study were 10,000 ~ 20,000 in 1 MHz, and 404 ~ 620 at high frequency region (18 MHz), both with dielectric constant of ~5, which considered as excellent dielectric properties.
Ceramic bulks sintered at 870 ~ 970℃ for 8 hours with 15 ~ 20 wt% Bi2O3 additives have thermal expansion coefficients of 17 ~ 20 x 10-7 /℃, which match the sili con’s (30 x 10-7 /℃) very well.
The resistivity coefficient of the ceramic bulks without Bi2O3 additives were lower compared to those with Bi2O3 additive. As the amount of Bi2O3 additives increased, the resistivity coefficient increased and became stable. The best resistivity coefficient found in this study was 4 x 1011 Ωcm.
參考文獻
1. Tummala, R. R. and E. J. Rymaszewski, Microelectronics Packing
Handbook, Van Nostrand, New York, 1988.
2. Koichi Watanabe, E. A. Giess and M. W. Shafer, “The
Crystallization Mechanism of High-Cordierite Glass,” Journal of
Materials Science, 20, pp. 508~515, 1985.
3. T. Sei, K. Eto and T. Tsuchiya, “The Role of Boron
Low-Temperature Synthesis of Indialite (α-Mg2Al4Si5O18) by
Sol-Gel Process,” Journal of Materials Science, 32, pp. 3013~3019,
1997.
4. Reser, M. K., “Phase Diagrams of Ceramics,” Journal of the
American Ceramic Society, Fig.712, 1964.
5. Karkhanavala, M. D. and F. A. Hummel, “Reactions in the System
Li2O-MgO-Al2O3-SiO2 : Ι, The Cordierite-Spodumene Join,” Journal of the American Ceramic Society, vol. 36, no. 12, pp. 393~397, 1953.
6. 鄭武輝等譯,“工業陶瓷,” 徐氏基金會出版社,1985。
7. Glendenning, M. D. and W. E. Lee, “Microstructural Development
on Crystallizing Hot-pressed Pellets of Cordierite Melt-derived Glass Containing B2O3 and P2O5, ” Journal of the American Ceramic Society, 79[3], pp. 705~713, 1996.
8. Andrew Putnis, Introduction to Mineral Sciences, Cambridge
University Press, 1992.
9. Miyashiro, A., “Cordierite-Indialite Relations,” American Journal
Science, 255, pp. 43~62, 1957.
10. Meagher, E. P. and G. V. Gibbs, “The Polymorphism of Cordierite:V.
The Crystal Structure of Indialite,” Canadian Mineral, 62[1-2], pp.67~78, 1977.
11. Evans, D. L. et al., “Thermal Expansions and Chemical
Modifications of Cordierite,” Journal of the American Ceramic Society, vol. 63, no.11~12, pp.629~634, 1980.
12. 黃忠良譯,“工業陶瓷,” 復漢出版社,1984。
13. 李育成,“菫青石玻璃陶瓷基板之性質研究,” 國立成功大學礦
冶及材料科學研究所碩士論文,1987。
14. Fisher, G. R., D. L. Evans and J. E. Geiger, “Crystal Lattice
Expansion of Cordierite,” Paper B-18, Presented at the American Crystallographic Association Meeting at Pennsylvania State University, State College, pp.18~23, 1974.
15. Kingery, W. D., Introduction to Ceramics, 2nd edition, John Wiley &
Sons, New York, 1976.
16. Moulson, A. J. and J. M. Herbert, Electroceramics – Materials.
Properties.Applications, Chapman and Hall, London, 1990.
17. Buchanan, R. C., Ceramic Materials for Electronics : Processing,
Properties and Applications, Marcel Dekker, Inc., 1986.
18. Eremenko, V. N., Y. V. Naidich and I. A. Lenko, Liquid Phase
Sintering, New York, 1970.
19. Kazakos, A. M., Sol-Gel Processing of Cordierite, M. S. Thesis,
Pennsylvania State University, University Park, PA, 1989.
20. Ulagaraj Selvaraj, Sridhar Komarneni, Rustum Roy, “Synthesis of
Glass-like Cordierite from Metal Alkoxides and Characterization by 27Al and 29Si MASNMR,” Journal of the American Ceramic Society, 73[12], pp.3663~3669, 1990.
21. Malachevsky , M. T., J. E. Fiscina and D. A. Esparza, “Preparation
of Synthesis Cordierite by Solid-State Reaction via Bismuth Oxide
Flux,” Journal of the American Ceramic Society, 84[7],
pp.1575~1577, 2001.
22. Villegas, M. A. and J. Alarcon, “Mechanism of Crystallization of
Co-Cordierite from Stoichiometric Powdered Glasses,” Journal of the European Ceramic Society, 22, pp. 487~494, 2002.
23. Dupon, R. W., R. L. McConville and D. J. Musolf, “Preparation of
Cordierite below 1000℃ via Bismuth Oxide Flux,” Journal of the American Ceramic Society, 73[2], pp. 335~339,1990.
24. 盧俊男,陳立軒,傅勝利,“多層玻璃陶瓷基板之研製,” 高雄
工學院學報,第二期,第57~68頁,中華民國84年度(1997)。
25. T. Sei, K. Eto and T. Tsuchiya, “The Role of Boron in
Low-temperature Synthesis of Indialite (α-Cordierite) by Sol-gel Process,” Journal of Materials Science, 32, pp. 3013-3019, 1997.
26. Yang, C. F., “The Sintering Characteristics of MgO-CaO-Al2O3-SiO2
Composite Powder Made by Sol-gel Method,” Ceramics International, 24, pp.243-247, 1998.
27. Rath, C., K. K. sahu, S. Anand, S. K. Date, N. C. Mishra and R. P.
Das, “Preparation and Characterization of Nanosize Mn-Zn Ferrite,” Journal of Magnetism and Magnetic Materials, vol. 202, pp. 77-84, 1999.
28. 高小娟,“反應後溶液pH調整對酒石酸鹽合成Li-Ferrite之熱反
應特性分析,” 國立成功大學資源工程研究所碩士論文,2001。
29. Yue, Z. X., J. Zhou, H. G. Zhang, Z. L. Gui, L. T. Li,
“Low-Temperature Sinterable Cordierite Glass-Ceramics for high-frequency Multilayer Chip Inductors,” Journal of Materials Science Letters, 19, pp. 213-215, 2000.
30. Lee, S. J. and W. M. Kriven, ibid. 81 (10), pp. 2605, 1998.
31. Spurr, R. A. and Mysers, H., “Quantitative Analysis of
Anatase-Rutile Mixtures with an X-Ray Diffractometer,” Analysis Chemistry, 29, pp.760-762, 1957.
32. Mei, S., Yang J. and J. M. F. Ferreira, “Microstructural Evolution in
Sol-Gel Derived P2O5-doped Cordierite Powders,” Journal of the European Ceramic Society, 20, pp. 2191~2197, 2000.
33. Kuczynski, G. C. and N. A. Hootoon, Sintering and Related
Phenomena, Gordon and Breach, New York, 1967.
34. Awano, M., H. Takagi, and Y. Kuwahara, “Grinding Effects on
Synthesis and Sintering of Cordierite,” Journal of the American Ceramic Society, 75(9), pp. 2535~2540, 1992.
35. Chandran, R. G. and K. C. Patil, “Combustion Synthesis,
Characterization, Sintering and Microstructure of Cordierite,” J. Br. Ceramic Trans., 92(6), pp. 239~245, 1993.
36. German, R. M., S. Farooq, and C. M. Kipphut, “Kinetics of Liquid
Phase Sintering,” Material Science & Engineering, A105/106, pp. 215-224, 1988.
37. Kostic, E., S. Kis, and S. Boskovic, “Liquid Phase Sintering of
Alumina,” Powder Metallurgy Int., 19, 1997.
38. Kaysser, W. A. and G. Petzow, “Present State of Liquid Phase
Sintering,” Powder Metallurgy, vol.28, no.3, 1985.
39. German, R.M., Liquid Phase Sintering, Plenum Press, New York and
London, 1995.
40. Camerucci, M. A., G. Urretavizcaya, M. S. Castro, A. L. Cavalieri,
“Electrical Properties and Thermal Expansion of Cordierite and Cordierite-Mullite Materials,” Journal of the European Ceramic Society, 21, pp. 2917-2923, 2001.
41. Suzuki, H., H. Saito and T. Hayashi, “Thermal and Electric
Properties of Alkoxy-Derived Cordierite Ceramic,” Journal of the European Ceramic Society, vol. 9, pp. 365-371, 1992.
42. Herbert, J. M., Ceramic Dielectrics and Capacitors, Gordon and
Breach Science Publishers, 1985.
43. Beals R. J. and R. L. Cook, Journal of the American Ceramic
Society, 35 (2), pp. 53-57, 1952
44. Saha, B. P., R. Johnson and I. Ganesh, “Thermal Anisotropy in
Sintered Cordierite Monoliths,” Materials Chemistry and Physics, 67, pp. 140-145, 2001.
45. Buessem W. P. and F. F. Large, Interceramics, 15(3), pp. 43, 1996.
46. Johnson, R., I. Ganesh, B. P. Saha, G.V. Narasimha Rao, Y. R.
Mahajan, “Solid State Reactions of Cordierite Precursor Oxides and
Effect of CaO doping on the Thermal Expansion Behavior of Cordierite Honeycomb Structures,” Journal of the Materials Science, vol. 38, pp. 2953-2961, 2003.