| 研究生: |
梁方虹 Liang, Fang-Hong |
|---|---|
| 論文名稱: |
微米等級與奈米等級光學結構的製程與特性量測 Fabrication and Measurement of Micro / Nano – scaled Optical Structures |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 準分子加工 、灰階光罩 、光導元件 、雙阻劑壓印 、熱壓成形奈米壓印 、超穎表面 |
| 外文關鍵詞: | Excimer laser micromachining, gray-scaled mask, micromirror, hot embossing nanoimprint lithography, metasurface |
| 相關次數: | 點閱:64 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包含兩部份的研究內容:一是利用準分子雷射加工,搭配繞射式灰階光罩,製作做出微米級的三維立體結構,應用於高分子材質的光波導元件;二是以奈米壓印製程技術製作奈米結構,應用於超穎介面的光學元件,並探討後續量產製作超穎介面的可行性。
在微米級光波導元件的研究中,重點在於發展「面外微鏡耦合」 (Out-of-plane Micro-mirror Coupling) 技術,關鍵是如何在已經完成的高分子光波導結構上,利用準分子雷射與灰階光罩的加工特性,一次性地製作出正45°斜率、結構尺寸約45 微米的微反射鏡;研究重點在於如何維持加工後45°傾斜面的平整性,以增強光波導的光耦合效率。雷射加工後的結構經由共軛焦顯微鏡的量測結果,其45°斜率角度的誤差不超過 ± 1°,表面粗糙度最小值為155 nm;而光耦合效率的實驗量測結果約為23%。在奈米級光學結構製作方面,主要是針對具有共振腔效應的超穎表面,在玻璃基板上製作出三層圖案化的金屬奈米結構,每一層金屬結構間則為玻璃材質的介電層。此一共振腔效應的超穎表面可利用電磁波的異常穿透特性,達到操控電磁波波前的能力,產生諸如波束偏折、波束聚焦、分光、…等光學功能。三層金屬結構中的第一與第三層是互相垂直的奈米金屬光柵,作為偏振片使用;第二層金屬結構則是依不同的光學目的設計出不同的陣列式圖案,以產生偏振轉換。金屬結構的高度為80 nm,特徵尺寸約在100 到數百nm 之間,金屬結構層之間的玻璃介電層的厚度為200 nm。
超穎介面之奈米結構的製作方法是利用雙阻劑與熱壓成形的奈米壓印技術,這能夠使本研究在模具深度150 nm的限制下,得以完成80 nm厚度的金屬結構高度。但是在第一與第三層的奈米光柵部份,受限於乾式蝕刻的側蝕效應,金屬結構高度只能達到45 nm,導致在偏振轉換的效率量測上只有8 %左右。未來可以努力的解決對策有:提高模具深度、找出不會側蝕結構側壁的乾式蝕刻參數、或改善金屬舉離製程、…等等。
This paper consists of two parts: excimer laser micromachining of micro-scaled three-dimensional (3D) microstructures applied to polymer optical waveguides, and nano-imprinting lithography for fabricating nanostructures with applications on metasurfaces.
For the excimer laser micromachining of 3D microstructures, the goal is to fabricate inclined micromirrors with a positive 45° slope. These inclined micromirrors are directly fabricated on a polymer optical waveguide using excimer laser along with a gray-scaled mask projection method. The dimension of the fabricated micromirror is around 45 micron and the key issue is to maintain its surface flatness and smoothness. Examination on the machined micromirrors shows the angular error is within 1 degree and the minimum surface roughness is around 155 nm. Finally, the light coupling efficiency using the 45° inclined micromirror along with a polymer optical waveguide is around 23 % by experimental measurement.
In the research of nanostructures, metasurfaces based on the resonant cavity effect are investigated. The metasurfaces are fabricated on a glass substrate and consist with three layers of patterned metallic nanostructures separated by dielectric layers. The three-layer nanostructure uses the characteristics of abnormal penetration of electromagnetic waves to manipulate the electromagnetic wavefront, which can result in certain optical properties such as beam deflection, beam focusing, light splitting, …etc. The first and the third layers are metal nano-gratings that are perpendicular to each other and used as polarizers; while the second layer metallic nanostructures are composed of different arrays of designed patterns for polarization conversion. The height of the metal structure of each layer is 80 nm, and the three layers of metallic nanostructures are separated by two layers of spin-on glass (SOG) with a layer thickness of 200 nm.
The method for fabricating the nano-scaled metal structures is using hot embossing nanoimprint lithography along with double resist layers, which can achieve 80 nm in the height of metal nanostructures even when the depth of the imprinting mold is limited to 150 nm. Experimental results and measurements show the dimensional deviation of the patterned nanostructures is within ± 0.1 %, and the height of the second layer metal structures also reached 80 nm. However, the structural height of metal nano-gratings on the first and the third layers could only reach 45 nm, due to the dry etching processes during nanoimprinting. Therefore, the efficiency measurement of polarization conversion is only about 8%. Future effort in improving this fabricating technology is under investigation.
[1] H.-H. Lin, “Designs and applications of micro optical elements, ” Internet: https://www.tiri.narl.org.tw/Publication/InstTdy, 2004.
[2] T. Fujita, H. Nishihara, and J. Koyama, “Fabrication of micro lenses using electron-beam lithography, ” Opt. Lett., vol. 6, no. 12, pp. 163-164, 1981.
[3] N.-G. Basov, V.-A. Danilychev, Yu.-M. Popov, and D.-D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam,” JETP Lett., vol. 12, no. 10, pp. 329, 1970.
[4] H.-J. Levinson, Principles of lithography, U.S.A., CA: SPIE press, 2005.
[5] C.-M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng., vol. 13, no. 2, pp. 170-177, 2003.
[6] S.-Y. Chou, P.-R. Krauss, and P.-J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., vol. 67, pp. 3114, 1998.
[7] D.-J.Resnick, S.-V. Sreenivasan, and C.-G. Willsonc, “Step & flash imprint lithography,” J. Mater. Today., vol. 8, no. 2, pp. 34-42, 2004.
[8] Y. Xia, J. Tien, D. Qin, and G.-M. Whitesides, “Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing,” Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
[9] C.-Y. Chiu and Y.-C. Lee, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng., vol. 18, no. 7, pp. 075013, 2008.
[10] 謝易達。奈米壓印與金屬轉印技術應用於提升發光二極體發光效率。國立成功大學機械工程學系碩博士班碩士論文,台南市,2010。
[11] M. -R. Krames, M. Ochiai-Holcomb, G.-E. Höfler, C. Carter-Coman, E.-I. Chen, I.-H. Tan, P. Grillot, N.-F. Gardner, H.-C. Chui, J.-W. Huang, S.-A. Stockman, F.-A. Kish, and M.-G. Craford, “High-power truncated-inverted-pyramid [(Al_x Ga_(1-x))]_0.5 In_0.5 P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, no. 16, pp. 2365-2367, 1999.
[12] 陳峻明,折射式微透鏡之準分子雷射LIGA製程開發與光學檢測,國立成功大學機械工程學系碩博士班碩士論文,台南市,2004。
[13] 黃冠欽,準分子雷射機率式加工法應用於任意曲面三維微結構之製作,國立成功大學機械工程學系碩博士班碩士論文,台南市,2006。
[14] K.-H. Gerlach, J. Jersch, K. Dickmann, and L. J. Hildenhagen, “Design and performance of an excimer-laser based optical system for high precision microstructuring,” J. Opt. Laser. Technol., vol. 29, no. 8, pp. 439-447, 1997.
[15] 洪羽璇,準分子雷射與孔洞面積光學繞射原理應用於製作特殊形貌之三維微結構,國立成功大學機械工程學系碩士論文,台南市,2002。
[16] C.-H.Tien, Y.-E. Chien, Y. Chiu, and H.-P.-D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography,” J. Appl. Phys., vol. 42, no. 3, pp. 1280-1283, 2003.
[17] T. Masuzawa, J. Olde-Benneker, and J.-J.-C. Eindhoven, “A new method for three dimensional excimer laser micromachining, hole area modulation (HAM) ,” CIRP Ann., vol. 49, no. 1, pp. 139-142, 2000.
[18] K.-H. Choi, J. Meijer, T. Masuzawa, and D.-H. Kim, “Excimer laser micromachining for 3D microstructure,” J. Mater. Process. Technol., vol. 149, nos. 1-3, pp. 561-566, 1999.
[19] D.-A.-B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE. Inst. Electr. Electron. Eng., vol. 88, no. 6, pp. 728-729, 2000.
[20] H. Cho, P. Kapur, and K.-C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Light. Technol., vol. 22, no. 9, pp. 2021-2033, 2004.
[21] R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B.-J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” Proc. IEEE. Inst. Electr. Electron. Eng., vol. 31, no. 4, pp. 759-767, 2008.
[22] H.-P. Kuo, P. Rosenberg, R. Walmsley, S. Mathai, L. Kiyama, J. Straznicky, M. Mclaren, M. Tan, and S.-Y. Wang, “Free-space optical links for board-to-board interconnects,” Appl. Phys. A., vol. 95, no. 4, pp. 955-965, 2009.
[23] S.-H. Hwang, M.-H. Cho, S.-K. Kang, T.-W. Lee, H.-H. Park, and B. S. Rho, “Two-dimensional optical interconnection based on two-layered optical printed circuit board,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 411-413, 2007.
[24] A. Hashim, N. Bamiedakis, J. Beals, Y. Hao, R.-V. Penty, and I.-H. White, “Polymer-based board-level optical interconnects,” In IEEE 2^nd International Conference on Photonics (ICP), 2011, pp. 1-5.
[25] L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, N. Meier; T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B.-J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” In Proc. 57^th Electronic Components and Technology Conference, 2007, pp. 1288-1293.
[26] A. Papakonstantinou, D. R. Selviah, K. Wang, R. A. Pitwon, K. Hopkins, and D. Milward, “Optical 8-channel, 10 Gb/s MT pluggable connector alignment technology for precision coupling of laser and photodiode arrays to polymer waveguide arrays for optical board-to-board interconnects,” In Proc. Electronic Components and Technology Conference, 2008, pp. 1769-1775.
[27] F.-E. Doany, C.-L. Schow, C.-W. Baks, D.-M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, and B.-J. Offrein, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Compon. Packaging. Manuf. Technol., vol. 32, no. 2, pp. 345-359, 2009.
[28] M. Immonen, J. Wu, H.-J. Yan, P. Chen, J.-X. Xu, and T.-R. Virtanen, “Development of electro-optical PCBs with polymer waveguides for high-speed intra-system interconnects,” Circuit World, vol. 38, no. 3, pp. 104-112, 2012.
[29] F. Betschon, T. Lamprecht, M. Halter, S. Beyer, and H. Peterson, “Design principles and realization of electro-optical circuit boards,” In Proc. SPIE, vol. 8630, 2013.
[30] R. Dangel, F. Horst, D. Jubin, A.-L. Porta, N. Meier, J. Weiss, and B.-J. Offrein, “Polymer waveguide based electro-optical assembly technology for computing applications,” In Proc. IEEE Photonics Conference, 2014, p 46-47.
[31] R.-S.-E. John, C.-M. Amb, B.-W. Swatowski, W.-K. Weidner, M. Halter, T. Lamprecht, and F. Betschon, “Thermally stable, low loss optical silicones:A key enabler for electro-optical printed circuit boards,” J. Light. Technol., vol. 33, no. 4, pp. 814-819, 2015.
[32] D.-R. smith, J. B. pendry, and M.-C.-K. wiltshire, “Metamaterials and negative refractive index,” Science, vol 305, no. 5685, pp. 788-792, 2004.
[33] H.-H. Hsiao, C.-H. Chu, and D.-P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods, vol. 1, no. 4, pp. 1-6, 2017.
[34] 朱致緯,奈米壓印微影製程應用於高頻表面聲波元件之製作與實驗量測,國立成功大學機械工程學系碩士論文,台南市,2020。
[35] Y.-Xia and G.-M. Whitesides, “Soft lithography” Angew. Chem. Int. Ed. Engl., vol 37, no. 5, pp. 550-575, 1998.
[36] T.-T. Truong, R. Lin, S. Jeon, H.-H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J.-A. Rogers, “Soft lithography using acryloxy perfluoropolyether composite stamps,” Langmuir, vol. 23, no. 5, pp. 2898-2905, 2007.
[37] S. Wang, Q. Shi, J. Chai, K. Cheng, and Z. Du, “Double layer lift-off nanofabrication controlled gaps of nanoelectrodes with sub-100 nm by nanoimprintlithography,” Nanotechnology, vol. 26, no. 18, pp. 185301, 2015.