| 研究生: |
吳博雄 Wu, Bo-Hsiung |
|---|---|
| 論文名稱: |
物理氣相沉積法成長奈米複合薄膜微結構特性與機械性質之研究 A Study on Microstructure and Mechanical Properties of Nanocomposite Films Deposited by Physical Vapor Deposition |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei 王俊志 Wang, J-J Junz |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 非晶矽 、碳化矽 、奈米晶粒 、奈米複合材料 、鈦類鑽碳薄膜 |
| 外文關鍵詞: | Amorphous silicon, SiC, nanoparticles, nanocomposite, Ti-containing diamond-like hydrocarbon |
| 相關次數: | 點閱:96 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要利用物理氣相沉積法成長奈米複合薄膜微結構特性與機械性質之研究,相關文獻指出由於單純類鑽碳膜可能會有熱穩定性及附著力不佳或內部高應力等問題,因此希望藉由添加矽及鈦元素以改善一般傳統類鑽碳膜之性質。其中利用超高真空離子束濺鍍系統成長單層碳(C)、雙層碳/矽(C/Si)及堆疊式三層矽/碳/矽(Si/C/Si)奈米複合薄膜。藉由封閉式非平衡磁控濺鍍系統成長含鈦類鑽碳(Ti-DLC)薄膜及其它奈米複合薄膜之研究上則利用反應式磁控共濺鍍法沉積鉭-矽-氮(Ta-Si-N)薄膜。探討奈米複合薄膜的製程参數、成分比例、溫度、微奈米結構與機械性質的關係。最後並進行脈波電化學在304不銹鋼棒成形具次微米特徵刀具之披覆含鈦類鑽碳薄膜與單晶鑽石刀具劃切實驗比較。上述相關奈米複合薄膜預期可在表層改質披覆、光電元件、微機電系統元件及工程材料等之應用。
本論文首先提出非晶矽(a-Si)層對於堆疊式碳/矽複合薄膜之影響的章節中,相關非晶矽層之位置對於複合薄膜結構藉由後處理高真空退火機制下沉積於基材為單晶矽之三種單、雙層及堆疊式矽/碳/矽三明治複合薄膜結構,研究其非晶矽層對於碳、矽間的反應影響。其中當單層碳於退火溫度達900℃,時間為1.5小時,無互相擴散反應。但當退火在相同條件下卻有部份擴散發生於雙層之碳/矽結構,同時檢測到非晶矽轉換成多晶矽結構。然而在三層矽/碳/矽複合薄膜三明治結構中,觀察到非晶矽轉換成多晶矽結構之退火溫度降為700℃,而且內部互相擴散反應明顯發生於900℃同時有結晶之碳化矽(SiC)形成。藉由堆疊式之碳/矽結構中轉換成之多晶矽晶界,其可能之擴散及反應機制在內文中有完整之探討。
相關碳化矽奈米晶粒形成探討上,利用超高真空離子束濺鍍系統成長於基材為單晶矽(100)晶圓之堆疊式矽/碳/矽結構中,藉由高真空熱退火機制轉換形成碳化矽奈米晶粒。當退火溫度500℃而退火時間為1小時條件下,並無任何碳化矽奈米晶粒檢測出,當退火溫度增加至700℃時開始部分碳化矽奈米晶粒形成,而當退火溫度達900℃時,次微米大之晶粒週遭觀察到有著數十奈米之碳化矽奈米晶粒產生。由於較高之原子遷移率及成長率所產生,由於退火溫度達900℃時,降低了較小晶粒的總表面能而使得晶粒成長。
奈米機械性質與薄膜之微結構特性息息相關。在各奈米複合薄膜機械性質探討之章節中,將分別針對高溫退火下非晶矽對於單、雙層及堆疊式三層矽/碳/矽之三種結構的機械性質行為影響,以及含鈦類鑽碳薄膜奈米機械性質探討。另外將針對氮氣流量比對於鉭-矽-氮奈米複合薄膜之微結構與奈米硬度關係之研究。
硬質薄膜層披覆應用探討上,將利用脈波電化學加工具次微米特徵之刀具進行含鈦類鑽碳薄膜披覆之特性探討,實驗結果發現隨著鈦成份含量增加而隨之sp2鍵結增加,導致降低薄膜材料之楊氏係數。因此相關奈米壓痕之硬度(H)與楊氏係數(E)之機械性質檢測上,當組別Ti-DLC-2鈦成份含量為7.2 %時有較高的H/E比值,亦即將有較佳之切削磨耗應用。最後,對於覆膜刀具與單晶鑽石在劃切實驗來觀察刀具幾何及材料性質對切削之影響,其中切削力之差異探討比較上,經切削實驗證明,覆膜刀具之比切削能於平均切削厚度約在20 μm時與單晶鑚石刀具之值大小相近,即切削性質與單晶鑚石刀具切削性接近;但是覆膜刀具在加工時的摩擦係數仍大於單晶鑚石刀具,即相關鍍膜條件參數及刀具材料尚有改善空間。而在電化學參數影響方面,也證明了調降脈衝寬度能降低表面粗度與刀刃圓角。
In this study, we utilized the method of physical vapor deposition (PVD) to form the single-layer C, two-layer C/a-Si and three-layer a-Si/C/a-Si nanocomposite films using ultra high vacuum ion beam sputtering (UHV IBS) system, Ti-containing diamond-like hydrocarbon (Ti-DLC) coatings in closed field unbalanced magnetron sputtering (CFUBMS) deposition system, and the Ta-Si-N nanocomposite films by magnetron co-sputtering reaction system. The relations between deposition parameters, composition, temperature, microstructure and nanomechanical properties are discussed and established by means of characterization and material analysis in this dissertation. They are potentially used for the application of surface modification, optoelectronic devices, microelectromechanical system and engineering tribology.
In the section of the reaction between C and Si, the amorphous silicon (a-Si) layer positioned under or sandwiching the C layer will affect reaction temperature between the a-Si and C layers at constant annealing time. The post vacuum annealing was performed in order to study the effect of a-Si layer during the reaction between C and Si in three specific kinds of structures i.e. C, C/a-Si and a-Si/C/a-Si deposited on crystalline silicon (c-Si) substrates. There was no interdiffusion between the single-layer C and c-Si substrate when annealed up to 900 ºC for 1.5 hours. But some interdiffusion occurred between C and a-Si of the two-layer C/a-Si structure when annealed at 900 ºC for 1.5 hours. Simultaneously, transformation of a-Si to polycrystalline Si was detected. In the a-Si/C/a-Si structure, the transformation of a-Si to polycrystalline Si was observed at 700 ºC along with significant interdiffusion at 900 ºC as well as crystalline SiC formation in the multilayer.
In the section of the formation of SiC nanoparticles, deposition of Si/C/Si multilayers on Si(100) wafers by UHV IBS was followed by thermal annealing in vacuum for the conversion into SiC nanoparticles. No nanoparticles were formed for multilayers which were annealed at 500 ºC, while a few particles started to appear when the annealing temperature increased to 700 ºC. At an annealing temperature of 900 ºC, many small SiC nanoparticles, of several tens of nanometers, surrounding larger submicron ones appeared with a particle density approximately 16 times higher than that observed at 700 ºC. The higher the annealing temperature, the larger the nanoparticle size along with a higher density. These particles grew larger at 900 ºC to reduce the total surface energy of smaller particles due to their higher atomic mobility and growth rate.
The nanomechanical properties are related to the microstructure of thin films. In the section of nanomechanical properties of C, C/Si, Si/C/Si and other nanocomposite films i.e. Ti-DLC and Ta-Si-N films are individual discussions about the effect of a-Si addition on the nanomechanical behavior of the C, C/Si and Si/C/Si films at high temperatures, nanomechanical properties of Ti-DLC, and nanohardness of Ta-Si-N thin films at different nitrogen flow ratios. In addition, in the section of hard coating for the application of wedge-shape tool, the Ti-DLC coatings on the electrochemical fabricated stainless steel tools have been synthesized by CFUBMS process. The microstructures of Ti-DLC coating are characterized by Raman spectroscopy. The results show that the sp2 bonding increases with decreasing Ti composition. Therefore, as Ti composition decreases, the hardness of Ti-DLC coatings increases. The high ratio of hardness to elastic modulus (H/E) in Ti-DLC-2 with low Ti content of 7.2% is good for the cutting and wearing tool applications. The fabricated tool is tested successfully in a scribing experiment and compared with a single crystal diamond cutter.
[1] J. Musil, “Hard and superhard nanocomposite coatings”, Surface and Coatings Technology 125, pp. 322–330, 2000.
[2] P. Holubar, M. Jilek and M. Sima, “Present and possible future applications of superhard nanocomposite coatings”, Surface and Coatings Technology133–134, pp. 145–151, 2000.
[3] F. Vaz and L. Rebouta, “Superhard nanocomposite Ti-Si-N coatings”, Materials Science Forum 383, pp. 143–149, 2002.
[4] R. A. Andrievski, “Films as nanostructured materials with characteristic mechanical properties”, Materials Transactions 42, pp. 1471–1473, 2001.
[5] S. Veprek and S Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films 268, pp. 64–71, 1995.
[6] S. Veprek and A. S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146–147, pp. 175–182, 2001.
[7] V. Provenzano and R.L. Holtz, “Nanocomposites for high temperature applications”, Materials Science and Engineering A 204, pp. 125–134, 1995.
[8] L. Maya, W. R. Allen, A. L. Glover and J.C. Mabon, “Gold nanocomposites”, Journal of Vacuum Science and Technology B 13, pp. 361–365, 1995.
[9] A. I. Gusev, “Effect of the nanocrystalline state in solids”, Physics- Uspekhi 41, pp. 49–76, 1998.
[10] T. Onishi, E. Iwamura, K. Takgi and K. Yoshikawa, “Influence of adding transition metal elements to an aluminum target on electrical resistivity and hillock resistance in sputter-deposited aluminum alloy thin films”, Journal of Vacuum Science and Technology A 14, pp. 2728–2735, 1996.
[11] F. Mazaleyrat and L.K. Varga, “Ferromagnetic nanocomposites”, Journal of Magnetism and Magnetic Materials 215–216, pp. 253–259, 2000.
[12] B. Cantor, C.M. Allen, R. Dunin-Burkowski et al., “Applications of nanocomposites”, Scripta Materialia 44, pp. 2055–2059, 2001.
[13] R. A. Andrievski and A.M. Gleze, “Size effects in properties of nanomaterials”, Scripta Materialia 44, pp. 1621–1624, 2001.
[14] J. Musil, P. Karvankova and J. Kasl, “Hard and superhard Zr-Ni-N nanocomposite films”, Surface and Coatings Technology 139, pp. 101–109, 2001.
[15] A. A. Voevodin, J. P. O'Neill, and J.S. Zabinski, “Nanocomposite tribological coatings for aerospace applications”, Surface and Coatings Technology 116–119, pp. 36–45, 1999.
[16] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.-D. Männling, P. Nesladek, G. Dollinger and A. Bergmaier, “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa”, Surface and Coatings Technology 133–134, pp. 152–159, 2000.
[17] J. Schiotz, Proceeding of the 22th Riso International Symposium on Materials Science, Roskilde, Denmark 127, 2001.
[18] S. Zhang, D. Sun, Y. Fu and H. Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167, pp. 113–119, 2003.
[19] M. Mejregany and C. A. Zorman, “SiC MEMS: opportunities and challenges for applications in harsh environments”, Thin Solid Films 355–356, pp. 518–524, 1999.
[20] Pasqualina M. Sarro, “Silicon carbide as a new MEMS technology”, Sensors and Actuators 82, pp. 210–218, 2000.
[21] C. R. Stoldt, C. Carraro, W. Robert Ashurst, Di Gao, Roger T. Howe and Roya Maboudian, “A low-temperature CVD process for silicon carbide MEMS”, Sensors and Actuators A 97–98, pp. 410–415, 2002.
[22] M. Dai, K. Zhou, Z. Yuan, Q. Ding and Z. Fu, “The cuttings performance of diamond and DLC-coated cutting tools”, Diamond and Related Materials 9, pp.1753–1757, 2000.
[23] H. Voigt, F. Schitthelm, T. Lange, T. Kullick and R. Ferretti, “Diamond-like carbon-gate PH-ISFET”, Sensors and Actuators B, pp. 441–445, 1997.
[24] P. Papakonstantinou, J.F Zhao, P. Lemoine, E.T. McAdams, and J.A. McLaughlin “The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films”, Diamond and Related Materials 11, pp. 1074–1080, 2002.
[25] P. Papakonstantinou, J.F Zhao, P. Lemoine, E.T. McAdams and J.A. McLaughlin “The effects of Si incorporation on the electrochemical and nanomechanical properties of DLC thin films”, Diamond and Related Materials 11, pp. 1074–1080, 2002.
[26] S. C. Ray, C. W. Bao, H. M. Tsai, J. W. Chiou, J. C. Jan, K. P. Krishna Kumar and W. F. Ponga,“Electronic structure and bonding properties of Si-doped hydrogenated amorphous carbon films”, Applied Physics Letters 85, pp. 4022–4024, 2004.
[27] P. Papakonstantinou and P. Lemoine, “Influence of nitrogen on the structure and nanomechanical properties of pulsed laser deposited tetrahedral amorphous carbon”, Journal of Physics: Condensed Matter 13, pp. 2971–2987, 2001.
[28] A. A. Voevodin, R. Bantle and A. Matthews, “Dynamic impact wear of TiCxNy and Ti-DLC composite coatings”, Wear 185, pp. 151–157, 1995.
[29] W. J. Wu and M. H. Hon, “Thermal stability of diamond-like carbon films with added silicon”, Surface and Coatings Technology 111, pp. 134–140, 1999.
[30] N. Kikuchi, E. Kusano, T. Tanaka, A. Kinbara and H. Nanto, “Preparation of amorphous Si1-xCx (0<x<1) films by alternate deposition of Si and C thin layers using a dual magnetron sputtering source”, Surface and Coatings Technology 149, pp. 76–81, 2002.
[31] L. Gou, C. Qi, J. Ran and C. Zheng, “SiC film deposition by DC magnetron sputtering”, Thin Solid Films 345, pp. 42–44, 1999.
[32] J. M. Ting and H. Lee, “DLC composite thin films by sputter deposition”, Diamond and Related Materials 11, pp. 1119–1123, 2002.
[33] Z. H. Liu, J. F. Zhao and J. M. Laughlin, “A study of microstructural and electrochemical properties of ultra-thin DLC coatings on AlTiC substrates deposited using the ion beam technique”, Diamond and Related Materials 8, pp. 56–63, 1999.
[34] J. Y. Seo, S. Y. Yoon, K. Niihara and K. H. Kim, “Growth and microhardness of SiC films by plasma-enhanced chemical vapor deposition”, Thin Solid Films 406, pp. 138–144, 2002.
[35] T. Kaneko, N. Miyakawa, H. Sone and H. Yamazaki, “Growth kinetics of hydrogenated amorphous silicon carbide films by RF plasma-enhanced CVD using two kinds of source materials”, Thin Solid Films 409, pp. 74–77, 2002
[36] V. Bursikova, V. Navratil, L. Zajickova and J. Janca, “Temperature dependence of mechanical properties of DLC/Si protective coatings prepared by PECVD”, Materials Science and Engineering A 324, pp. 251–254, 2002.
[37] B.G. Kim, Y.W. Lee, J.W. Lee and Y. Choi, “Formation mechanism of C/SiC/C multi-layers during self-propagating high-temperature synthesis”, Surface and Coatings Technology 151–152, pp. 26–30, 2002.
[38] M. M. Janusik, A Kassiba, J Boucl´e, J-F Bardeau, S Kodjikian and A D´esert, “Vibrational density of states in silicon carbide nanoparticles: experiments and numerical simulations” Journal of Physics: Condenses Matter 17, pp. 5101–5110, 2005.
[39] A. Bezryadin, C. Dekker and G. Schmid,“Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Applied Physics Letters 71, pp. 1273–1275, 1997.
[40] Y. Oshima, T. Nangou, H. Hirayama and K. Takayanagi, “Face centered cubic indium nano-particles studied by UHV-transmission electron microscopy”, Surface Science 476, pp. 107–114, 2001.
[41] M. Xu, V. M. Ng, S. Y. Huang, J. D. Long and S. Xu, “Growth of SiC Nanoparticle Films by Means of RF Magnetron Sputtering”, IEEE Transactions on Plasma Science 33, pp. 242–243, 2005.
[42] Y. Xu, K. Narumi, K. Miyashita and H. Naramoto, “AFM observation of nanosized SiC dots prepared by ion beam deposition”, Surface and Interface Analysis 35, pp. 99–103, 2003.
[43] C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe and R. Maboudian, “A low-temperature CVD process for silicon carbide MEMS”, Sensors and Actuators A: 97–98, pp. 410–415, 2002.
[44] J. Y. Seo, S. Y. Yoon, K. Niihara and K. H. Kim, “Growth and microhardness of SiC films by plasma-enhanced chemical vapor deposition”, Thin Solid Films 406, pp. 138–144, 2002.
[45] K. Kametani, K. Sudoh and H. Iwasaki, “Growth of SiC nanodots on Si(111) by exposure to ferrocene and annealing studied by scanning tunneling microscopy”, Thin Solid Films 467, pp. 50–53, 2004.
[46] M. Oizumi, “Control of crystalline structure and electrical properties of TaSiN thin film formed by reactive RF-sputtering,” Japan Journal of Apply Physic 39, pp. 1291–1294, 2000.
[47] E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A. Nicolet, “Tantalum-based diffusion barriers in Si/Cu VLSI metallizations” Journal of Apply Physics 94, pp. 1369–1372, 2003.
[48] Y. J. Lee, B. S. Suh, M. S. Kwon and C. O. Park, “Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection”, Journal of Applied Physics 85, pp. 1927–1934, 1999.
[49] M. Bicker, C.- U. Pinnow, U. Geyer and S. Schneider, “Nanocrystallization of amorphous- Ta40Si14N46 diffusion barrier”, Applied Physics Letters 78 , pp. 3618–3620, 2001.
[50] L. W. Lai and J. S. Chen, “Influence of Ta/Si atomic ratio on the interdiffusion between TaSiN and Cu at elevated temperature, “Journal of Apply Physics 94, pp. 5396–5398, 2003.
[51] R. Hubner, M. Hecker, N. Mattern, A. Voss, J. Acker, V. Hoffmann, K. Wetzig, H.-J. Engelmann, E. Zschech, H. Heuer and Ch. Wenzel, “Influence of nitrogen content on the crystallization behavior of thin Ta-Si-N diffusion barriers“, Thin Solid Films 468, pp. 183–192, 2004.
[52] I. W. Park and K. H. Kim, “Coating materials of TiN, Ti-Al-N, and Ti-Si-N by plasma-enhanced chemical vapor deposition for mechanical applications”, Journal of Materials Processing Technology 130–131, pp. 254–259, 2002.
[53] S. Veprek, “Different approaches to superhard coating and nanocomposites”, Thin Solid Films 476, pp. 1–29, 2005.
[54] J. W. Nah, S. K. Hwang and C. M. Lee, “Development of a complex heat resistant hard coating based on (Ta, Si)N by reactive sputtering”, Materials Chemistry and Physics 62, pp. 115–121, 2000.
[55] J. W. Nah, W. S. Choi, S.K. Hwang and C.M. Lee, “Chemical state of (Ta, Si) N reactively sputtered coating on a high-speed steel substrate”, Surface and Coatings Technology 123, pp. 1–7, 2000.
[56] C. K. Chung and P. J. Su, “Material characterization and nanohardness measurement of nanostructured Ta-Si-N films”, Surface and Coatings Technology 188–189, pp. 420–424, 2004.
[57] J. C. Hsu, “Co-sputtering some materials in titanium oxides by ion-beam sputtering deposition”, OSA Technical Digest Series 9, pp. 63–65, 1998.
[58] C. Misiano and E. Simonetti, “Co-sputtered optical films”, Vacuum 27, p. 403–406, 1977.
[59] http://www.pvd-coatings.co.uk/theory-of-pvd-coatings-unbalanced-magnetron.htm
[60] F. J. Giessibl, “Advances in atomic force microscopy”, Reviews of Modern Physics 75 (3), pp. 949–983, 2003.
[61] J. Robertson,“Diamond-like amorphous carbon”, Materials Science and Engineering R37, pp. 129–281, 2002.
[62] MTS Systems Corporation Nano Instruments Innovation Center, “Theory & practice of instrumented indentation testing (IIT)”, MTS Workshop: Nanomechanical Test, 2004.
[63] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research 7, pp. 1564–1583, 1992.
[64] X. Li, B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials Characterization 48, pp. 11–36, 2002.
[65] B. Bhushan and X. Li, “Nanomechanical characterisation of solid surfaces and thin films”, International Materials Reviews 48, pp. 125–164, 2003.
[66] T. Aoki, H. Hatta, T. Hitomi, H. Fukuda and I. Shiota, “SiC/C multi-layered coating contributing to the antioxidation of C/C composites and the suppression of through-thickness cracks in the layer”, Carbon 39, pp. 1477–1483, 2001.
[67] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B 61, pp. 14095–14106, 2000.
[68] Y. G.. Gogotsi and M. Yoshimura, “Formation of carbon films on carbides under hydrothermal conditions “, Nature 367, pp. 628–630, 1994.
[69] Rama Vuppuladhadium, Howard E. Jackson and Richard L. C. Wu, “Raman scattering from hydrogenated amorphous carbon films“, Journal of Apply Physics 77, No. 6, pp. 2714–2718, 1995.
[70] Y. Kimura and T. Katoda, “Effects of strain on crystallization of amorphous silicon characterized by laser Raman spectroscopy”, Applied Surface Science 117, pp. 790–793, 1997.
[71] A. Kailer, K. G. Nickel1 and Y. G. Gogotsi, “Raman Microspectroscopy of Nanocrystalline and Amorphous Phases in Hardness Indentations”, Journal of Raman Spectroscopy 30, pp. 939–946, 1999.
[72] J. Liu and Y. K. Vohra, “Raman mode of 6H polytype of silicon carbide to ultrahigh pressures: A comparision with silicon and diamond”, Physical Review Letters 72, pp. 4105–4108, 1994.
[73] H. Nienhaus, T. U. Kampen and W. Monch, “Phonos in 3C-, 4H-, and 6H-SiC”, Surface Science Letters 324, pp. 328–332, 1995.
[74] M. Flores, V. Fuenzalida and P. Häberle, “Thermal effects in the size distribution of SiC nanodots on Si(111)”, Physica Status Solidi (A) 202, pp. 1959–1966, 2005.
[75] William D. Callister, Jr., Fundamentals of Materials Science and Engineering 2nd ed. John Wiley & Sons, NJ, pp. 420–427, 2005.
[76] William D. Callister, Jr., Fundamentals of Materials Science and Engineering 2nd ed. John Wiley & Sons, NJ, pp. 141–142, 2005.
[77] H. Voigt, F. Schitthelm, T. Lange, T. Kullick and R. Ferretti, “Diamond-like carbon-gate PH-ISFET”, Sensors and Actuators B, pp. 441–445, 1997.
[78] B. K. Gupta and B. Bhushan, “Micromechanical properties of amorphous carbon coatings deposited by different deposition techniques”, Thin Solid Films 270, pp. 391–398, 1995.
[79] J. Meneve, R. Jacobs, F. Lostak, L. Eersels, E. Dekempeneer and J. Smeets, Mater. Res. Soc. Symp. Proc. 308, pp. 671–677, 1993.
[80] K. R. Lee, M. G. Kim, S. J. Cho, K. Y. Eun and T. Y. Seong,” Structural dependence of mechanical properties of Si incorporated diamond like carbon films deposited by RF plasma-assisted chemical vapour deposition”, Thin Solid Films 308–309, pp. 263–267, 1997.
[81] G. H. Yang, B. Zhao, Y. Gao and F. Pan, “Investigation of nanoindentation on Co/Mo multilayers by the continuous stiffness measurement technique”, Surface & Coatings Technology 191, pp. 127–133, 2005.
[82] X. Z. Ding, F. M. Zhang, X. H. Liu, P.W. Wang, W.G. Durrer, W.Y. Cheung, S.P. Wong and I.H. Wilson, “Ion beam assisted deposition of diamond-like nanocomposite films in an acetylene atmosphere”, Thin Solid Films 346, pp. 82–85, 1999.
[83] http://www.memsnet.org/material.
[84] F. C. Marques, R. G. Lacerda, A. Champi, V. Stolojan, D. C. Cox and S. R. P. Silva, ”Thermal expansion coefficient of hydrogenated amorphous carbon”, Applied Physics Letters 83, pp. 3099–3101, 2003.
[85] G. Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon”, Applied Physics Letters 66, pp. 3570–3572, 1995.
[86] A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior”, Wear. 246, pp. 1–11, 2000.
[87] J. Schiotz and K.W. Jacobsen, ”A Maximum in the strength of nanocrystalline copper ”, Science 301, pp. 1357–1359, 2003.
[88] Y. N. Picard, D. P. Adams, M. J. Vasile and M. B. Ritchey, “Focused Ion Beam-Shaped Microtools for Ultra-Precision Machining of Cylindrical Components”, Precision Engineering 27, pp. 59–69, 2003.
[89] N. Ravi and S. X. Chuan, “The Effects of Electro-Discharge Machining Block Electrode Method for Microelectrode Machining”, Journal of micromechanics and microengineering 12, pp. 532–540, 2002.
[90] R. Schuster, V. Kirchner, P. Allongue and G. Ertl, “Electrochemical Micromachining”, Science 289, pp. 98–101, 2000.
[91] M. Dai, K. Zhou, Z. Yuan, Q. Ding and Z. Fu, “The cuttings performance of diamond and DLC-coated cutting tools”, Diamond and Related Materials 9, pp. 1753–1757, 2000.