簡易檢索 / 詳目顯示

研究生: 賴俞丞
Lai, Yu-Cheng
論文名稱: 有限元素動力學分析與拓樸最佳化於頭部撞擊汽車儀表板之安全性研究
Explicit Dynamic Finite Element Analysis and Topology Optimization for Safety Evaluation of the Head Impact with Automotive Instrument Panel
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 汽車儀表板頭模撞擊器有限元素分析拓樸最佳化
外文關鍵詞: Instrument panel, head impact, finite element analysis, topology optimization
相關次數: 點閱:101下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽車為我國非常普及的交通工具,其所具有之安全性能對乘客來說非常重要,當發生車禍時,人體往往會因為急煞或其他原因與車內物發生撞擊導致受傷,而人體頭部是最容易撞擊到車內物也是最脆弱的部位,其中又以汽車儀表板為最容易撞擊到之區域,因此儀表板的安全性能就顯得非常重要。本研究以副駕駛座乘客為研究對象,對頭部撞擊汽車儀表板之衝擊情形進行有限元素動力學分析,由分析結果取得頭部加速度響應後即以ECE R21(Economic Commission for Europe Regulation 21)作為傷害標準,並評估撞擊之儀表板是否具有安全性,若未達ECE R21之安全標準則進行儀表板之安全性能改善。本研究將以自製頭模撞擊器進行頭模低速衝擊實驗,並與相同環境設定下之有限元素分析模擬結果進行驗證,於驗證完成後再以ECE R21所規範之頭模撞擊速度作為初始條件進行頭模高速衝擊模擬,最後由模擬之頭模加速度響應結果進行儀表板之安全性評估,結果顯示,本研究所選定之現行車儀表板在高速衝擊下於各撞擊點均符合ECE R21安全規範。當儀表板不符合安全規範時,為了降低人體頭部撞擊汽車儀表板之傷害,本研究以3D拓樸最佳化方法對儀表板之撞擊區域進行厚度設計,並在頭部撞擊儀表板時之最大位移處,以最大化其輸出位移為目標進行拓樸最佳化,最後將不同目標體積之拓樸結果應用於有限元素分析中,其結果顯示,經拓樸最佳化之汽車儀表板均具有提高頭部安全性之效果。

    Head impact protection is one of the major criteria for occupant safety. This study presents the numerical and experimental interior head impact analysis of automotive instrument panel according to the United Nations Economic Commission for Europe Regulation 21 (ECE R21). To minimize the possible injury risk for unrestrained front seat passengers due to the interior head impact with the instrument panel, the panel design needs to meet the ECE R21 standard which defines a pendulum-type head form as the impactor. In this study, a numerical model based on the explicit dynamic finite element analysis (FEA) by using the commercial FEA solver, LS-DYNA, is developed. To minimize the experimental cost, a gravity-based impactor with a smaller impact speed is developed as the test apparatus for pendulum impactor in longitudinal plane (PILP) for verification purpose. The simulated results agree well with the experimental data; the average accuracy for the maximum acceleration at the head form is 95.78%. After the verification, the standard test conditions with higher impact speed are performed to evaluate the design of the instrument panel. The 3D topology optimization technique is also used to optimize the instrument panel; the objective function is to maximize the output displacement. The results show that the proposed topology optimized design can reduce the maximum acceleration of the head form during the impact.

    目錄 摘要 III ABSTRACT IV 致謝 XIII 目錄 XIV 圖目錄 XVII 表目錄 XX 符號說明 XXII 第一章 緒論 1 1.1 文獻回顧 4 1.1.1 頭部傷害標準 4 1.1.2 頭模衝擊實驗 5 1.1.3 拓樸最佳化 7 1.2 研究動機與目的 9 1.3 研究架構 9 第二章 頭模低速衝擊實驗設計 11 2.1 頭模撞擊器製作相關規範 12 2.1.1 折合質量與打擊中心 12 2.2 頭模撞擊器之設計 13 2.2.1 配重塊設計 14 2.3 頭模撞擊器 27 2.4 低速衝擊實驗 28 2.4.1 頭部撞擊區域 30 2.4.2 速度量測 32 2.4.3 加速度量測 34 第三章 有限元素分析模型建立 36 3.1 前處理過程 38 3.2 模擬環境設定與求解 41 3.2.1 物質特性 42 3.2.2 接觸設定與邊界條件 44 3.2.3 初始條件 45 3.3 有限元素分析模擬結果 47 第四章 3D拓樸最佳化方法 50 4.1 設計區間與邊界條件 53 4.2 SIMP模型 54 4.3 元素靈敏度 56 4.4 輸出位移最大化 57 4.5 最佳化準則法 60 4.5.1 二分法與收斂準則 61 4.6 3D拓樸最佳化結果 63 第五章 結果與討論 67 5.1 頭模高速衝擊模擬 68 5.1.1 頭模低速衝擊之驗證 68 5.1.2 頭模高速衝擊模擬結果 70 5.2 設計參數影響 72 5.2.1 不同厚度之最大加速度與吸收能量差異 72 5.2.2 不同厚度與材料對頭模最大加速度影響 77 5.3 儀表板之3D拓樸最佳化模擬結果 81 5.3.1 固定設計區間總體積 81 5.3.2 固定削減與補強區域之厚度大小 85 第六章 結論與建議 88 6.1 結論 88 6.2 建議 89 參考文獻 91 附錄 93

    參考文獻
    [1]中華民國行政院交通部, http://www.motc.gov.tw.
    [2]國家標準(CNS)檢索系統, www.cnsonline.com.tw.
    [3]日本獨立行政法人自動車技術綜合機構, http://www.naltec.go.jp.
    [4]The United Nations Economic Commission for Europe, http://www.unece.org.
    [5]National Highway Traffic Safety Administration, http://www.nhtsa.gov.
    [6]The Department of Infrastructure and Regional Development of Australian Government, https://infrastructure.gov.au.
    [7]A. Haynes and H. R. Lissner, "Experimental head impact studies," in Proceedings: American Association for Automotive Medicine Annual Conference, 1961, pp. 158-170.
    [8]R. P. Daniel and L. Patrick, "Instrument panel impact study," SAE Technical Paper1965.
    [9]C. Gadd, "Use of Weighted-impulse Criterion for Estimating Injury Hazard: Proceedings of the Tenth Stapp Car Crash Conference. Society of Automotive Engineers," Inc., New York, 1966.
    [10]J. Versace, "A review of the severity index," SAE Technical Paper 0148-7191, 1971.
    [11]B. M. Boggess and G. G. Foreman, "Mass-Based Considerations for Head Injury Protection Development," in 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 2007.
    [12]M. Sharma, R. Pandey, and A. Gupta, "Instrument-Panel Head Form Impact Test: Effects of Different Impactors & Test Methodologies," SAE Technical Paper 0148-7191, 2007.
    [13]Commercial H-pendulum test systrm, http://micro-sys.com.
    [14]財團法人車輛研究測試中心, http://www.artc.org.tw.
    [15]L. A. Schmit, "Structural design by systematic synthesis," in Proceedings, 2nd conference on Electronic computation, ASCE, New York, 1960, pp. 105-122.
    [16]L. L. Howell, S. P. Magleby, and B. M. Olsen, Handbook of compliant mechanisms: Wiley Online Library, 2013.
    [17]M. Y. Wang, S. Chen, X. Wang, and Y. Mei, "Design of multimaterial compliant mechanisms using level-set methods," Journal of Mechanical Design, vol. 127, pp. 941-956, 2005.
    [18]M. P. Bendsøe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Computer methods in applied mechanics and engineering, vol. 71, pp. 197-224, 1988.
    [19]G. I. Rozvany, M. Zhou, and T. Birker, "Generalized shape optimization without homogenization," Structural optimization, vol. 4, pp. 250-252, 1992.
    [20]M. P. Bendsoe, Optimization of structural topology, shape, and material vol. 2: Springer, 1995.
    [21]K. Svanberg, "The method of moving asymptotes—a new method for structural optimization," International journal for numerical methods in engineering, vol. 24, pp. 359-373, 1987.
    [22]J. Nocedal and S. Wright, Numerical optimization: Springer Science & Business Media, 2006.
    [23]T. E. Bruns and D. A. Tortorelli, "Topology optimization of non-linear elastic structures and compliant mechanisms," Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 3443-3459, 2001.
    [24]O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and multidisciplinary optimization, vol. 21, pp. 120-127, 2001.
    [25]K. Liu and A. Tovar, "An efficient 3D topology optimization code written in Matlab," Structural and Multidisciplinary Optimization, vol. 50, pp. 1175-1196, 2014.
    [26]M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications: Springer Science & Business Media, 2013.
    [27]A. Diaz and O. Sigmund, "Checkerboard patterns in layout optimization," Structural optimization, vol. 10, pp. 40-45, 1995.
    [28]M. Keranen, S. Krishnaraj, L. L. Kumar Kulkani, R. Thyagarajan, and V. Ganesan, "Automating instrument panel head impact simulation," in SAE World Congress, SAE2005-01-1221, 2005.
    [29]株式会社JSP, http://www.co-jsp.co.jp.
    [30]P. W. Christensen and A. Klarbring, An introduction to structural optimization vol. 153: Springer Science & Business Media, 2008.
    [31]D. Woodman, "Thermoformed Soft Instrument Panel," SAE Technical Paper 0148-7191, 2003.

    下載圖示 校內:2021-08-16公開
    校外:2021-08-16公開
    QR CODE