| 研究生: |
林尚良 Lin, Shang-Liang |
|---|---|
| 論文名稱: |
含氮非晶質碳膜之成長特性及其場發射性質研究 |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 場發射 |
| 外文關鍵詞: | nitrogenated amorphous carbon, field emission |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於非晶質碳膜製程簡單、沉積溫度低且不需做成尖錐Spindt結構就可以場發射電子,大幅降低製作場發射元件成本,因此被視為極有潛力的場發射材料。但在近期研究報導中指出量測其場發射性質時,需要將電壓快速升降數次以達穩定的場發射電流,稱為conditioning效應,而限制其在場發射器元件上的應用。此外目前研究對於碳膜場發射電子的機構尚未完全釐清,依據Robertson所提之團簇模型,藉由提升非晶質碳膜之導電通路,可進一步改善其場發射特性。
本研究嘗試以微波ECR電漿源耦合R.F.偏壓的方式,將氮原子摻雜於非晶質碳膜中,並以拉曼光譜、高解析電子顯微鏡及ESCA分析微結構,測試場發射性質,探討微波功率、R.F.偏壓及摻雜氮含量對非晶質碳膜成長、微結構與場發射性質之影響。
實驗結果顯示隨著氮摻雜量增加,碳膜中sp2碳鍵結增加且團簇尺寸減小,使其拉曼光譜的G peak往高波數偏移,且ID/IG比值增加。藉由高解析電子顯微鏡觀察,發現碳膜中序化的團簇尺寸隨氮含量增加而扭曲縮小。以原子力顯微鏡觀察鍍膜表面型態,發現鍍膜表面非常平整,沒有表面幾何侷限的存在。經由ESCA分析氮含量並鑑定氮碳鍵結,可確認摻雜之氮原子在非晶質碳膜結構中取代苯環結構內的碳原子(Narom)而造成序化結構扭曲,並成為團簇間的架橋原子(Nbridge),增加電子傳導路徑,使碳膜之場發射性質隨氮含量增加而改善,起始電壓由14.1 V/μm(氮含量1.0 at%)降低至1.4 V/μm(氮含量4.9 at%)。
Amorphous carbon thin films recently are regarded as a promising candidate for the FED cathode material. The advantage of carbon based thin films is the simplification of the manufacturing process compared to the formation of Spindt tips and the lower deposition temperature. However, it was found, during field emission testing, necessary to ramp the voltage up and down several times in initial stage in order to stabilize I-V curves which is called conditioning effect, which limits its application in field emission. Besides, according to the cluster model as proposed by Robertson, a better emission property can be achieved if path conductivity of amorphous carbon films can be enhanced. Therefore, in this study an attempt is made to incorporate nitrogen into amorphous carbon films. The influences of incorporating nitrogen on the growth characteristics and the improvement of field emission properties are investigated.
Electron cyclotron resonance plasma dual with R.F. bias was used to synthesize nitrogen-containing amorphous carbon films with a CH4+N2 gas mixture. The effects of nitrogen content, microwave power and R.F. bias on the structural and electrical properties of thin films had been determined by Raman spectroscopy, HRTEM, XPS and field emission test.
Experimental results show that the shift of G peak position toward higher wavenumber increases with nitrogen content increasing indicating that the effect of nitrogen addition is to promote the C sp2 bonding. From the Gaussian fitting results of ID/IG value combined with the observation of HRTEM, it could be confirmed that the size of ordering cluster domain decreases with nitrogen content increasing. The binding energy analysis from ESCA spectra of C 1S and N 1S for nitrogenated amorphous carbon films indicates that the N atoms incorporate either by substituting C atoms in the aromatic rings (Narom) or connecting these sp2 microdomains (Nbridge). The emission test results show that the electron emission properties could be improved by reducing electric threshold field from 14.1 V/μm to 1.4 V/μm as nitrogen content increases from 1.0 at% to 4.9 at%. The AFM observation shows that the surface is so smooth that there should exist no geometric field enhancement. Thus the incorporation of nitrogen into amorphous carbon films could introduce the matrix/cluster interface with suitable electronic characteristics for easily conducting electrons, i.e. the path conductivity of amorphous carbon films is enhanced by incorporating nitrogen, and subsequently improves the emission properties.
1. A. Grill, “Diamond-like carbon: state of the art”, Diamond Rel. Mater.,
8 (1999) 428
2. J. A. Theil, “Fluorinated amorphous carbon films for low permittivity
interlevel dielectrics”, J. Vac. Sci. Technol. B, 17 (1999) 2397
3. F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminescence in a-C:H
films”, Phys. Rev. B, 51 (1995) 2143
4. J. E. Jaskie, “Diamond-based field-emission displays”, MRS Bull., 21 (1996)
59
5. M. L. Cohen, “Calculation of bulk moduli of diamond and zincblende solids”,
Phys. Rev. B, 32 (1985) 7988
6. H. Sjostrom, L.Hultman, J. –E. Sundgren, S. V. Hainsworth, T. F. Page and G.
S. A. M. Theunissen, “Structural and mechanical properties of carbon nitride
CNX (0.2≦X≦0.35) films”, J. Vac. Sci. Technol. A, 14 (1996) 56
7. O. Bohme, S. Yang D. G. Teer, J. M. Alnella and E. Roman, “Composition
profile of heat treated carbon nitribe hard coatings”, J. Vac. Sci. Technol.
A, 19 (2001) 2578
8. M. L. Wu, M. U. Guruz, V. P. Dravid, Y. W. Chung, S. Anders, F. L. Freire,
Jr. and G. Mariotto, “Formation of carbon nitride with sp3-bonded carbon in
CNX/ZrN supperlattice coatings”, Appl. Phys. Lett., 76 (2000) 2692
9. S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown,
J. Schwan, D. F. Franceschini and G. Mariotto, “Nitrogen modification of
hydrogenated amorphous carbon films”, J. Appl. Phys., 81 (1997) 2626
10. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and
H. J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field
emission properties”, Science, 283 (1999) 512
11. M. W. Geis, N. N. Efremow, K. E. Krohn, J. C. Twichell, T. M. Lyszczarz, R.
Kalish, J. A. Greer and M. D. Tabat, “A new surface electron-emission
mechanism in diamond cathodes”, Nature, 393 (1998) 431
12. S. R. P. Silva G. A. J. Amaratunga and K. Okano, “Modeling of the electron
field emission process in polycrystalline diamond and diamond-like carbon
thin films”, J. Vac. Sci. Technol. B, 17 (1999) 557
13. B. S. Satyanarayana, A. Hart, W. I. Milne and J. Robertson, “Field emission
from tetrahedral amorphous carbon”, Appl. Phys. Lett., 71 (1997) 1430
14. S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian and G. Morell,
“Electron field emission properties of gamma irradiated microcrystalline
diamond and nanocrystalline carbon thin films”, J. Appl. Phys., 15 (2002)
3311
15. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, A. C. M. Yang, I. N. Lin and H.
C. Shih, “Electron field emission from amorphous carbon nitride synthesized
by electron cyclotron resonance plasma”, J. Vac. Sci. Technol. B, 18 (2000)
1840
16. A. Ilie, A. Hart, A. J. Flewitt, J. Robertson and W. l. Milne, “Effect of
work function and surface microstructure on field emission of tetrahedral
amorphous carbon”, J. Appl. Phys., 88 (2000) 6002
17. J. D. Carey and S.R.P. Silva, “Conditioning of hydrogenated amorphous carbon
thin films for field emission via current stressing”, Appl. Phy. Lett., 78
(2001) 347
18. J. Asmussen, “Electron cyclotron resonance microwave discharges for etching
and thin film deposition”, in Handbook of plasma processing technology,
edited by M. R. Stephen, J. C. Jerome and S. W. William (Noyes Publication,
U.S.A., 1989) pp.285-307
19. M. A. Lieberman, “Design of high-density plasma sources for materials
processing”, in Physics of thin films, edited by M. H. Francombe and J. L.
Vossen (Academic Press, New York, 1994) pp.2-34
20. Y. Lifshitz, S. R. Kasi, J. W. Rabalais and W. Eckstein, “Subplantation
model for film growth from hyperthermal species”, Phys. Rev. B, 41 (1990)
10468
21. J. Robertson, “Deposition mechanism of diamond-like carbon”, in Amorphous
carbon: state of the art, edited by S. R. P. Silva, J. Roberston, W. I.
Milne, and G. A. J. Amaratunga (World Scientific, London, 1998) pp.32-45
22. A. von Keudell, T. Schwarz-Sellinger and W. Jacob, “Simultaneous interaction
of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon
films”, J. Appl. Phys., 89 (2001) 2979
23. J. Robertson, “Diamond-like amorphous carbon”, Mater. Sci. Eng. R, 37
(2002) 129
24. J. Robertson, “Amorphous carbon”, Adv. Phys., 35 (1986) 317
25. J. Robertson, “Deposition mechanism of diamond-like a-C and a-C:H”, Diamond
Rel. Mater., 3 (1994) 361
26. T. Frauenheim, P. Blaudeck, U. Stephan and G. Jungnickel, “Atomic structure
and physical properties of amorphous carbon and its hydrogenated analogs”,
Phys. Rev. B, 48 (1993) 4823
27. N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, M. Bernasconi and M.
Parrinello, “Microscopic structure of tetrahedral amorphous carbon”, Phys.
Rev. Lett., 76 (1996) 768
28. C. Kittel, Introduction to solid state physics, (John Wiley & Sons, New York,
1991) chapter 6, pp.125-156
29. G. F. Richard, “Low-macroscopic-field electron emission from carbon films
and other electrically nanostructured heterogeneous materials: hypotheses
about emission mechanism”, Solid-State Elect., 45 (2001) 779
30. R. H. Folwer and L. Nordheim, “Electron emission in intense electric
fields”, Proc. Roy. Soc. Ser. A, 119 (1928) 173
31. J. Robertson, “amorphous carbon cathodes for field emission display”, Thin
Solid Films, 296 (1997) 61
32. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of
disordered and amorphous carbon”, Phys. Rev. B, 61 (2000) 14095
33. B. Dumay, E. Finot, M. Theobald, O. Legaie, P. Baclet, J. Durand an J. P.
Goundonnet, “Atomic force microscopy investigation of a-C:H films prepared
by plasma enhanced chemical vapor deposition for inertial confinement fusion
experiments”, J. Vac. Sci. Techol. A, 20 (2002) 366
34. J. C. Sanchez-Lopez, C. Donnet, F. Lefebvre, C. Fernandez-Ramos and A.
Fernandez, “Bonding structure in amorphous carbon nitride: A spectroscopic
and nuclear magnetic resonance study”, J. Appl. Phys., 90 (2001) 675
35. P. Hammer, R. G. Lacerda, R. Droppa, Jr. and F. Alvarez, “Comparative study
on the bonding structure of hydrogenated and hydrogen free carbon nitride
films with high N content”, Diamodn Relat. Mater., 9 (2000) 577
36. C. Ronning, H. Feldermann, R. Merk, H. Hofsass, P. Reinke and J. –U. Thiele,
“Carbon nitride deposited using energetic species: A review on XPS syudies”,
Phys. Rev. B, 15 (1998) 2207
37. N. Hellgren, M. P. Johansson, B. Hjorvarsson, E. Broitman, M. Ostblom, B.
Liedberg, L. Hultman amd J. –E. Sundgren, “Growth, structure, and
mechanical properties of CNxHy films deposited by dc magnetron sputtering in
N2/Ar/H2 discharges”, J. Vac. Sci. Technol. A, 18 (2000) 2349
38. R. O. Dillon and J. A. Woollam, “Use of Raman scattering to investigate
disorder and crystallite formation in as-deposited and annealed carbon
films”, Phys. Rev. B, 29 (1984) 3482
39. J. Schwan, S. Ulrich, V. Bathori, H. Erhardt and S.R.P. Silva, “Raman
spectroscopy of amorphous carbon films”, J. Appl. Phys., 80 (1996) 440
40. H. Sjostrom, S. Stafstrom, M. Boman and J. –E. Sundgren, “Superhard and
elastic carbon nitride thin film having fullerenelike microstructure”, Phys.
Rev. Lett., 14 (1995) 1336
41. J. Hu, P. Yang and C. M. Lieber, “Nitrogen-driven sp3 to sp2 transformation
in carbon nitride materials”, Phys. Rev. B, 57 (1998) 3185
42. N. Hellgren, M. P. Johansson, E. B., L. Hultman and J. Sundgren, “Role of
nitrogen in the formation of hard and elastic CNx thin films by reactive
magnetron sputtering”, Phys. Rev. B, 59 (1999) 5162
43. J. B. Cui, J. Robertson and W. I. Milne, “Improved electron emission from
carbon film using a resistive layer”, J. Appl. Phys., 89 (2001) 3490
44. Y. K. Yap, S. Kida, Y. Wada, M. Yoshimure, Y. Mori and T. Sasaki, “Effect of
carbon nitride boning structure on electron field emission”, Diamond Rel.
Mater., 9 (2000) 1228
45. J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Origin of electric field
enhancement in field emission from amorphous carbon thin films”, Appl. Phys.
Lett., 78 (2001) 2339
46. S. Gupta, B. R. Weiner and G. Morell, “Role of sp2 C cluster size on the
field emission properties of sulfur- incorporated nanocomposite carbon thin
films”, Appl. Phy. Lett., 80 (2002) 1471
47. S. L. Sung, C. H. Teng, F. K. Chiang, X. J. Guo, X. W. Liu and H. C. Shih,
“A novel approach to the formation of amorphous carbon nitride film on
silicon by ECR0CVD”, Thin Solid Films, 340 (1999) 169
48. N. A. Fox, W. N. Wang, T. J. Davis, J. W. Steeds and P. W. may, “Field
emission properties of diamond films of different qualities”, Appl. Phys.
Lett., 71 (1997) 1