| 研究生: |
劉彥呈 Liu, Yen-Cheng |
|---|---|
| 論文名稱: |
976nm三階全光纖雷射幫浦效率改善研究 Improvement of 976nm 3-level all-fiber laser pump efficiency |
| 指導教授: |
蔡宗祐
Tsai, Tzong-Yow |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 976nm三階全光纖雷射 、幫浦效率 、氟素介面活性劑 、CO2雷射退火 、光纖蝕刻 |
| 外文關鍵詞: | 976nm 3-level all-fiber laser, pump effiency, fluorinated surfactant, CO2 laser annealing, fiber etching |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文為改善摻鐿光纖蝕刻到40微米後幫浦效率低落的問題。實驗以SMF130V取代摻鐿光纖進行蝕刻,經Rsoft模擬證明,只要光的模態數不超過135,蝕刻後的SMF130V就可以完美傳遞能量。因此蝕刻造成的缺陷是主要問題,我們利用氟素介面活性劑和40WCO2雷射退火兩種方法來改善蝕刻後SMF130V的穿透率。
氟素介面活性劑在光纖直徑蝕刻到51微米時可以提高穿透率,幅度約10~20%,在光纖蝕刻到40微米時反而使穿透率下降,原因在於介面活性劑和HF混合產生的沉澱物會影響蝕刻,而蝕刻時間長短會影響沉澱物多寡造成結果不同,所以此方法無法改善雷射幫浦效率。CO2雷射退火則可以達成目標,雷射的duty cycle調整為80,spot size 4mm,加熱時間200秒,掃描速度0.25mm⁄s,掃描距離10cm,最高可以提升穿透率達19.26%,未來可以應用在蝕刻摻鐿光纖上。
This thesis is to improve the problem of low pump efficiency when the Yb-doped fiber is etched to 40μm. The experiment used SMF130V instead of Yb-doped fiber for etching. By running Rsoft simulation, it proved that as long as the mode order of the light does not exceed 135, the etched SMF130V can perfectly transmit the energy. Therefore, the defects caused by the etching is the main problem. We use fluorinated surfactant and 40W CO2 laser annealing to improve the transmission of etched SMF130V.
Fluorinated surfactant can increase the transmission by 10~20% when the fiber diameter is etched to 51μm. The transmission is reduced when the fiber diameter is etched to 40μm because the precipitate produced by the mixture of surfactants and HF affected the etching. The etching time will affect the number of precipitate and cause different results. That is to say, this method cannot improve the pump efficiency. However, CO2laser can improve the transmission. We adjusted the duty cycle of the laser to 80, and set the heating time to 200sec, then set the scanning speed to 0.25mm⁄s, finally set the scanning distance to 10cm. With these parameters, we can increase the transmission by up to 19.26%. Therefore, the laser annealing can be applied to the etched Yb-doped fiber in the future.
FominV., MashkinA., AbramovM., FerinA., & GapontsevV. (2006). 3 kW Yb fibre lasers with a single-mode output. presented at the Int.Symp. High-Power Fiber Lasers Appl. St. Petersburg.
Boullet, J., Zaouter, Y., Desmarchelier, R., Cazaux, M., Salin, F., Saby, J., . . . Cormier, E. (2008). High power ytterbium-doped rod-type three-level photonic crystal fiber laser. Optics Express, 16(22), pp. 17891-17902.
Dejneka, M. J., Hanson, B. Z., Crigler, S. G., Zenteno, L. A., Minelly, J. D., Allan, D. C., . . . Kuksenkov, D. (2004). La2O3‐Al2O3‐SiO2 Glasses for High‐Power, Yb3+‐Doped, 980‐nm Fiber Lasers. Journal of the American Ceramic Society, 85(5), pp. 1100-1106.
Dutta, S., & Jackson, H. E. (2008). Reduction of scattering from a glass thin‐film optical waveguide by CO2 laser annealing. Applied Physics Letters, 37(6), pp. 512-514.
Einstein, A. (1917). Zur Quantentheorie der Strahlung. Phys.Z, 121-128.
Fu, L., Ibsen, M., Richardson, D., & Payne, D. (2004). Three-level fiber DFB laser at 980 nm. Optical Fiber Communication Conference. Los Angeles.
Hanna, D., Tropper, A., Nilsson, J., & Paschotta, R. (1997). Ytterbium-doped fiber amplifiers. IEEE Journal of Quantum Electronics, 33(7), pp. 1049-1056.
Jackson, S. D., & King, T. A. (1998). High-power diode-cladding-pumped Tm-doped silica fiber laser. Optics Letters, 23(18), pp. 1462-1464.
Jelger, P., Engholm, M., Norin, L., & Laurell, F. (2010). Degradation-resistant lasing at 980 nm in a Yb⁄Ce⁄Al -doped silica fiber. Journal of the Optical Society of America B, 27(2), pp. 338-342.
Jeong, Y., Sahu, J., Payne, D., & Nilsson, J. (2004). Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics Express, 12(25), pp. 6088-6092.
Koester, C. J., & Snitzer, E. (1964). Amplification in a Fiber Laser. Applied Optics, 3(10), pp. 1182-1186.
Kong, J., Tang, D. Y., Chan, C., Lu, J., Ueda, K., Yagi, H., & Yanagitani, T. (2007). High-efficiency 1040 and 1078nm laser emission of a Yb:Y2O3 ceramic laser with 976nm diode pumping. Optics Letters, 32(3), pp. 247-249.
Kotov, L., Likhachev, M., Bubnov, M., Medvedkov, O., Yashkov, M., Guryanov, A., . . . Cormier, E. (2013). 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm. Optics Letters, 38(13), pp. 2230-2232.
Limpert, J., Deguil-Robin, N., Manek-Hönninger, I., Salin, F., Röser, F., Liem, A., . . . Jakobsen, C. (2005). High-power rod-type photonic crystal fiber laser. Optics Express, 13(4), pp. 1055-1058.
Niederprum, H., Klein, H. G., & Meussdoerffer, J.-N. (1977). US Patent No. 4055458.
Nilsson, J., Minelly, J., Paschotta, R., Tropper, A., & Hanna, D. (1998). Ring-doped cladding-pumped single-mode three-level fiber laser. Optics Letters, 23(5), pp. 355-357.
Parent, M. J., Savu, P. M., & Flynn, R. M. (2007). US Patent No. 7169323.
Parent, M. J., Savu, P. M., Flynn, R. M., Zhang, Z., Lamanna, W. M., Qiu, Z.-M., & Moore, G. G. (2006). US Patent No. 7101492.
Pureur, V., Bigot, L., Bouwmans, G., Quiquempois, Y., Douay, M., & Jaouen, Y. (2008). Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980nm. Applied Physics Letters, 92(6).
Snitzer, E., Po, H., Hakimi, F., Tumminelli, R., & McCollum, B. C. (1988). DOUBLE CLAD, OFFSET CORE Nd FIBER LASER. Optical Fiber Sensors, (p. PD5).
Wu, J., Zhu, X., Temyanko, V., LaComb, L., Kotov, L., Kiersma, K., . . . Peyghambarian, N. (2017). Yb3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers. Optical Materials Express, 7(4), pp. 1310-1316.
Ylä-Jarkko, K., Selvas, R., Soh, D., Sahu, J., Codemard, C., Nilsson, J., . . . Grudinin, A. (2003). A 3.5 W 977 nm Cladding-pumped Jacketed Air-Clad Ytterbium-Doped Fiber Laser. Advanced Solid-State Photonics, 83, p. 103.
Zenteno, L., Minelly, J., Dejneka, M., & Crigler, S. (2000). 0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd:YAG. Advanced Solid State Lasers, (p. MD7).
Zhan, H., Liu, Q., Wang, Y., Ke, W., Ni, L., Wang, X., . . . Lin, A. (2016). 5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes. Optics Express, 24(24), pp. 27087-27095.
校內:2025-07-28公開