簡易檢索 / 詳目顯示

研究生: 羅之磊
Rosell, Neon Vicente III Bacarro
論文名稱: 二維材料變得容易:關於熔鹽合成硼氮化物和碳氮化物及其廢水處理之應用
2D Materials Made Facile: A Treatise on the Molten Salt Synthesis of Boron and Carbon Nitrides and their Applications for Wastewater Treatment
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 137
中文關鍵詞: 熔鹽合成六方氮化硼石墨氮化碳聚(三嗪酰亞胺)光催化超濾
外文關鍵詞: molten salt synthesis, hBN, gCN, PTI, photocatalysis, ultrafiltration
ORCID: 0000-0002-9176-4932
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熔鹽合成法成功製備了結晶碳和氮化硼,二者皆表現出高結晶度和優異的水分散性。我們製備了結晶度極高的結晶聚三嗪酰亞胺(PTI),並首次透過FT-IR光譜的經驗指數證實了這一點。鉀離子在PTI中的插層是該材料研究中的新發現,這可能是其結晶度增強的原因。 PTI奈米片展現出光催化活性,並採用SDS輔助水熱法與P25複合。優化後的PTI-P25複合材料在300 W氙燈照射下能有效降解亞甲基藍(MB)和羅丹明(RhB)染料,在0.8 V飽和甘汞電極(SCE)下實現了0.6%優異的光電轉換效率。
    在實驗室規模下簡單的自下而上合成六方氮化硼(hBN)是此材料經驗研究的關鍵進展。值得注意的是,合成的粉末無需額外處理即可表現出親水性。由於其顯著的親水性,hBN被用作超濾膜的主要成分,該超濾膜在過濾過程中能夠攔截99%的羅丹明B(RhB)染料。當hBN與P25混合並經受300 W氙燈照射時,發現其對活性氧敏感,從而形成可重複使用的超濾膜系統。

    Molten salt synthesis was successfully used to create crystalline carbon and boron nitrides, both showing high crystallinity and strong water dispersibility. Crystalline poly-(triazine imide) (PTI) with unmatched crystallinity was produced, supported by our first empirically-derived index of FT-IR spectra for the material. Potassium intercalation in PTI, a novel finding for this material, may explain the enhanced crystallinity. PTI nanosheets demonstrated photocatalytic activity and were combined with commercial photocatalytic titanium dioxide (P25) using a sodium dodecyl sulfate (SDS)-assisted hydrothermal method. The optimized PTI-P25 composite effectively degraded methylene blue and Rhodamine B dyes under 300 W Xenon (Xe) lamp exposure and reached a record photo-to-current efficiency of 0.6% at 0.8 volts versus saturated calomel electrode (V SCE).
    The facile, bottom-up synthesis of hexagonal boron nitride (hBN) at the laboratory scale represents a key advancement in the empirical research on this material. Remarkably, the as-synthesized powders exhibited hydrophilicity without requiring additional powder treatment. Due to its pronounced water affinity, hBN was employed as a principal component in an ultrafiltration membrane, which demonstrated the capability to reject 99% of rhodamine B dye during filtration. The dye retained on hBN was found to be sensitive to reactive oxygen species when combined with P25 and subjected to 300 W Xe irradiation, resulting in a reusable ultrafiltration membrane system.

    摘要 iii 關鍵字: iii Abstract iv Keywords: iv Acknowledgements v Dedication vii Table of Contents ix List of Figures xv List of Tables xviii Preface xix Part I. Introduction and Overview 1 1 Introduction 3 1.1 Background and Motivation 3 1.1.1 Global Water Purification Needs and Technological Challenges 3 1.1.1.1 Taiwan’s Local Water Needs 4 1.1.2 Semiconductor Devices for Water Treatment: Photo(electro)catalysis 6 1.2 Advances in Photocatalytic Materials by CTRL Lab 7 1.2.1 Combinatorial high-κ Thin-Films Research 7 1.2.2 Combinatorial Density-Gradient Hydrothermal Research 7 1.2.3 Heterojunction and Bandgap Engineering 8 1.2.4 Multifuntional Composites 8 1.2.5 Relevance 9 1.3 Technologically Important Elements and the Opportunity for Metal-Free Alternatives 9 1.3.1 Overview of Key Elemental Abundances in Earth 9 1.3.2 Recent Advances and Promise of Metal-Free Materials 10 1.4 Research Accessibility and Impact in the Developing World 11 1.5 What is ultrafiltration? 11 1.6 Research Objectives and Scope 12 1.6.1 Objectives and Scope of the Research 12 1.6.2 Dissertation Structure 12 1.6.3 Acknowledgement of prior publication and copyright notice 13 2 Literature Review 16 2.1 Poly-Triazine Imide (PTI): The Crystalline Graphitic Carbon Nitride (gCN) 16 2.1.1 Historical Overview 16 2.1.2 Structure, Properties, and Known Synthesis Methods 17 2.1.3 High-Tech Applications 18 2.1.4 Material Challenges 18 2.2 Hexagonal Boron Nitride (hBN) 19 2.2.1 Historical Overview 19 2.2.2 Structure and Synthesis. 19 2.2.3 High-Tech Applications 20 2.2.4 Material Challenges 21 2.3 Lithium Chloride (LiCl) and Potassium Chloride (KCl): A Deep Eutectic Molten Salt 21 2.3.1 Key Properties of the LiCl-KCl Binary System 21 2.3.2 Why Use LiCl-KCl? 21 2.4 Photocatalysis and Ultrafiltration: Complimentary Technologies for Water Treatment 22 2.4.1 Ultrafiltration Overview 22 Part II. Experimental 23 3 Materials and Methods 25 3.1 Materials and Reagents Used 25 3.1.1 Working Gases 25 3.1.2 Solvents used for washing. 25 3.1.3 Chemicals Used in Experimentation 25 3.2 List of Fabrication Equipment and Specifications 27 3.2.1 Tube Furnace and Alumina Boat 27 3.2.2 Ultracentrifuge 27 3.2.3 Ultrasonic Bath 28 3.2.4 Hydrothermal Autoclave and Oven 29 3.2.5 Spin Coater 29 3.2.6 Vacuum Filtration System 29 3.3 Materials Synthesis and Post-Synthesis Protocols 30 3.3.1 Molten Salt Synthesis of PTI 30 3.3.2 Molten Salt Synthesis of hBN 31 3.3.3 Rhodamine B (RhB) Dye Solution Preparation 31 3.3.4 Composite and Device Fabrication 31 3.3.4.1 SDS-Assisted Hydrothermal Decoration of P25 Nanoparticles on PTI 31 3.3.4.2 Fabrication of PTI-P25 Electrochemical Electrodes 32 3.3.4.3 Fabrication of P25-hBN Ultrafiltration Membranes 32 3.4 Characterization Methods 33 3.4.1 Structural (XRD, TEM, SEM, EA) 33 3.4.1.1 XRD 34 3.4.1.2 HRTEM 34 3.4.1.3 SEM 34 3.4.1.4 Elemental Analysis 34 3.4.2 Surface Physics and Chemistry 34 3.4.2.1 XPS 34 3.4.2.2 BET 35 3.4.2.3 TEM-EELS 35 3.4.3 Optical and Electronic 35 3.4.3.1 UV-Visible Spectroscopy 36 3.4.3.2 Ultraviolet Photoelectron Spectroscopy (UPS) 37 3.4.3.3 Fourier-Tranform Infrared Spectroscopy (FT-IR) 37 3.4.3.4 Raman and Photoluminescence Spectroscopy 38 3.4.4 Photoelectrochemical Testing of PTI 38 3.5 Device Setup Performance Testing 38 3.5.1 Photocatalytic Reactor Setup 38 3.5.1.1 P25-PTI powders 38 3.5.1.2 hBN Photocatalytic Membrane Regeneration Tracking 39 3.6 Computational Techniques Used for Analysis 39 3.6.1 XRD Analysis 39 3.6.2 TEM and EELS Analysis 40 3.6.3 Deconvolution for XPS 40 3.6.4 Peaks Identification in Raman and Photoluminescence Spectra 40 3.6.4.1 Raman Peak Indexing and Literature Comparison 40 3.6.4.2 Approach to Photoluminescence Spectroscopy 41 3.6.5 Linear Region Determination and Extrapolation for Tauc plots and UPS 41 3.6.6 Photocatalytic Semiconductor Band Gap Construction 41 3.6.7 Photocatalytic Degradation Tracking 42 4 Results and Discussion 44 4.1 Material and Device Characterizations 44 4.1.1 Material Properties 44 4.1.1.1 PTI and (1-x)PTI–xP25 Composites 44 4.1.1.2 hBN 54 4.1.2 Device Properties 63 4.1.2.1 (1-x)PTI–xP25 (x = 23 at.%) 63 4.1.2.2 hBN-P25/nylon ultrafiltration membrane 65 4.2 Photocatalytic and Photoelectrochemical Performance of PTI 67 4.3 Ultrafiltration Membrane Performance of hBN Nanosheets 72 Part III. Conclusions and Future Work 76 5 Conclusions 78 6 Future Work 80 6.1 Immediate Potential Applications 80 6.1.1 Capture of Rogue Microplastics and Nanomaterials 80 6.2 Synthesis Equipment Improvements and Scale-up 80 6.2.1 Switching out the quartz tube 80 6.2.2 Synthesis Scale-Up 82 References 84 Declaration on the Use of Generative Artificial Intelligence 113 Permitted Institutional Use and Retained Rights 116

    [1] United Nations Independent Group of Scientists, "Times of Crisis, Times of Change: Science Accelerating Transformations to Sustainable Development," New York, USA, 2023, Available: https://sdgs.un.org/gsdr/gsdr2023, Accessed on: November 27, 2025.
    [2] UNESCO, "Engineering for Sustainable Development: Delivering on the Sustainable Development Goals," UNESCO, Paris, France, 2021, Available: https://unesdoc.unesco.org/ark:/48223/pf0000375644.
    [3] United Nations, "Sustainable Development Goal 6 Synthesis Report 2018 on Water and Sanitation," United Nations, New York, USA, Report, 2018.
    [4] M. Salgot and M. Folch, "Wastewater treatment and water reuse" Current Opinion in Environmental Science & Health, 2, 64–74 (2018).
    [5] E. Kabir, V. Kumar, K. H. Kim, A. C. K. Yip, and J. R. Sohn, "Environmental impacts of nanomaterials" Journal of Environment Management, 225, 261–271 (2018).
    [6] A. Trianni, M. Negri, and E. Cagno, "What factors affect the selection of industrial wastewater treatment configuration?" Journal of Environment Management, 285, 112099 (2021).
    [7] C.-Y. Wang and J.-B. Wang, "Analysis and Evaluation of Taiwan Water Shortage Factors and Solution Strategies" Asian Social Science, 6, no. 10, (2010).
    [8] T.-V.-T. Nguyen, C.-F. Ni, Y.-J. Hsu, P.-E. R. Chen, N. H. Hiep, I. H. Lee, C.-P. Lin, and G. Gosselin, "Quantitative Evaluations of Pumping-Induced Land Subsidence and Mitigation Strategies by Integrated Remote Sensing and Site-Specific Hydrogeological Observations" (in English), Remote Sensing, 16, no. 20, (2024).
    [9] Y.-K. Juan, Y. Chen, and J.-M. Lin, "Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan" Water, 8, no. 11, (2016).
    [10] M. Lee, C.-Y. Yu, P.-C. Chiang, and C.-H. Hou, "Water–Energy Nexus for Multi-Criteria Decision Making in Water Resource Management: A Case Study of Choshui River Basin in Taiwan" Water, 10, no. 12, (2018).
    [11] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode" (in English), Nature, 238, no. 5358, 37–38 (1972).
    [12] K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications" (in English), Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, no. 3, 169–189 (2012).
    [13] Q. Wang, M. Zhang, C. Chen, W. Ma, and J. Zhao, "Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Bronsted acid" Angewandte Chemie, International Edition in English, 49, no. 43, 7976–7979 (2010).
    [14] B. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, "Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism" Langmuir, 27, no. 13, 8500–8508 (2011).
    [15] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis" (in English), Chemical Reviews, 95, no. 1, 69–96 (2002).
    [16] E. Pelizzetti and C. Minero, "Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles" Electrochimica Acta, 38, no. 1, 47–55 (1993).
    [17] N. V. I. B. Rosell, Y.-S. Chang, and K.-S. Chang, "Facile Synthesis of Poly(triazine imide)–P25 Composites Through Pyrolysis and Hydrothermal Reactions for Photocatalytic Application" Journal of Electronic Materials, 54, no. 9, 7254–7267 (2025).
    [18] N. V. B. Rosell and K.-S. Chang, "Molten salt synthesis of hexagonal boron nitride for ultrafiltration" Diamond and Related Materials, 157, (2025).
    [19] G. R. Buettner, "The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate" Archives of Biochemistry and Biophysics, 300, no. 2, 535–543 (1993).
    [20] R. Fagan, D. E. McCormack, D. D. Dionysiou, and S. C. Pillai, "A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern" (in English), Materials Science in Semiconductor Processing, 42, 2–14 (2016).
    [21] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, and Y. He, "An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures" Water Research, 79, 128–146 (2015).
    [22] K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, and B. V. Lotsch, "Triazine-based carbon nitrides for visible-light-driven hydrogen evolution" Angewandte Chemie, International Edition in English, 52, no. 9, 2435–2439 (2013).
    [23] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides" Science, 293, no. 5528, 269–271 (2001).
    [24] G. Zhang, Z. A. Lan, L. Lin, S. Lin, and X. Wang, "Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents" Chem Sci, 7, no. 5, 3062–3066 (2016).
    [25] H.-C. Feng and K.-S. Chang, "Characterization of Sputtered HfO2−x –TiO2−x Nanocolumn Arrays and Their Application in Photocatalysis" Journal of Electronic Materials, 46, no. 7, 4532–4538 (2017).
    [26] N. V. B. Rosell, Y. T. Chen, and K. S. Chang, "Defective Y2O3−x–driven anomalous photocatalytic enhancement using Y2O3−x–TiO2−x nanorod composite composition spreads" Journal of the American Ceramic Society, 100, no. 12, 5548–5560 (2017).
    [27] W. C. Lu, L. C. Tseng, and K. S. Chang, "Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications" ACS Comb Sci, 19, no. 9, 585–593 (2017).
    [28] Y. X. Li and K. S. Chang, "Hydrothermal fabrication of p‐Cu2O−n‐ZnO films and their properties for photodegradation and ultraviolet sensors" Journal of the American Ceramic Society, 105, no. 6, 3896–3908 (2022).
    [29] Y.-L. Chiu and K.-S. Chang, "Surfactant-assisted formation of robust p-Ag2O – n-BaTiO3 heterojunctions for visible-light photocatalytic applications" Applied Surface Science, 655, (2024).
    [30] W.-C. Lu, H.-D. Nguyen, C.-Y. Wu, K.-S. Chang, and M. Yoshimura, "Modulation of physical and photocatalytic properties of (Cr, N) codoped TiO2 nanorods using soft solution processing" Journal of Applied Physics, 115, no. 14, (2014).
    [31] D.-H. Lin and K.-S. Chang, "Photocatalytic and photoelectrochemical performance of Ta3N5 microcolumn films fabricated using facile reactive sputtering" Journal of Applied Physics, 120, no. 7, (2016).
    [32] Y.-J. Peng, S.-Y. Lee, and K.-S. Chang, "Facile Fabrication of a Photocatalyst of Ta4N5Nanocolumn Arrays by Using Reactive Sputtering" Journal of the Electrochemical Society, 162, no. 6, H371–H375 (2015).
    [33] Y. T. Wang, K. S. Chang, and R. J. Xie, "Piezopotential‐Induced Schottky Behavior of Zn1−xSnO3 Nanowire Arrays and Piezophotocatalytic Applications" Journal of the American Ceramic Society, 99, no. 8, 2593–2600 (2016).
    [34] T. N. Nhan Nguyen and K.-S. Chang, "Piezoelectricity-enhanced multifunctional applications of hydrothermally-grown p-BiFeO3—n-ZnO heterojunction films" Renewable Energy, 197, 89–100 (2022).
    [35] A. P. R. Arazas, C.-C. Wu, and K.-S. Chang, "Hydrothermal fabrication and analysis of piezotronic-related properties of BiFeO3 nanorods" Ceramics International, 44, no. 12, 14158–14162 (2018).
    [36] T. N. N. Nguyen and K.-S. Chang, "Piezophotodegradation and piezophotoelectrochemical water splitting of hydrothermally grown BiFeO3 films with various morphologies" Journal of Environmental Chemical Engineering, 10, no. 2, (2022).
    [37] R. L. Rudnick and S. Gao, "Composition of the Continental Crust." in Treatise on Geochemistry, 2014, pp. 1–51.
    [38] M. Z. Rahman, K. Davey, and S.-Z. Qiao, "Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges" Journal of Materials Chemistry A, 6, no. 4, 1305–1322 (2018).
    [39] A. Savateev, D. Dontsova, B. Kurpil, and M. Antonietti, "Highly crystalline poly(heptazine imides) by mechanochemical synthesis for photooxidation of various organic substrates using an intriguing electron acceptor – Elemental sulfur" (in English), Journal of Catalysis, 350, 203–211 (2017).
    [40] C. Li, Y. Xu, W. Tu, G. Chen, and R. Xu, "Metal-free photocatalysts for various applications in energy conversion and environmental purification" Green Chemistry, 19, no. 4, 882–899 (2017).
    [41] U. N. G. Assembly, "Transforming our world: the 2030 Agenda for Sustainable Development," United Nations, New York, USAA/RES/70/1, 2015.
    [42] J. Liebig, "Uber einige Stickstoff ‐ Verbindungen" Annalen der Pharmacie, 10, no. 1, 1–47 (1834).
    [43] L. Gmelin, "Ueber einige Verbindungen des Melon's" Annalen der Pharmacie, 15, no. 3, 252–258 (1835).
    [44] W. Henneberg, "Ueber einige Zersetzungsproducte des Mellonkaliums" Justus Liebigs Annalen der Chemie, 73, no. 2, 228–255 (1850).
    [45] C. von and Cannizzaro, "Untersuchungen über die amidartigen Verbindungen des Cyans" Justus Liebigs Annalen der Chemie, 78, no. 2, 228–231 (1851).
    [46] L. Pauling and J. H. Sturdivant, "The Structure of Cyameluric Acid, Hydromelonic Acid and Related Substances" Proc Natl Acad Sci U S A, 23, no. 12, 615–620 (1937).
    [47] A. Y. Liu and M. L. Cohen, "Prediction of new low compressibility solids" Science, 245, no. 4920, 841–842 (1989).
    [48] D. M. Teter and R. J. Hemley, "Low-Compressibility Carbon Nitrides" Science, 271, no. 5245, 53–55 (1996).
    [49] M. J. Bojdys, J. O. Muller, M. Antonietti, and A. Thomas, "Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride" Chemistry, 14, no. 27, 8177–8182 (2008).
    [50] E. Wirnhier, M. Doblinger, D. Gunzelmann, J. Senker, B. V. Lotsch, and W. Schnick, "Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1‑x)3·LiCl]: a crystalline 2D carbon nitride network" Chemistry, 17, no. 11, 3213–3221 (2011).
    [51] F. K. Kessler and W. Schnick, "From Heptazines to Triazines – On the Formation of Poly(triazine imide)" (in English), Zeitschrift fur Anorganische und Allgemeine Chemie, 645, no. 12, 857–862 (2019).
    [52] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P. M. Ajayan, "Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light" Advanced Materials, 25, no. 17, 2452–2456 (2013).
    [53] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, and T. Zhang, "Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution" Advanced Materials, 29, no. 16, (2017).
    [54] M. Liu, C. Wei, H. Zhuzhang, J. Zhou, Z. Pan, W. Lin, Z. Yu, G. Zhang, and X. Wang, "Fully Condensed Poly (Triazine Imide) Crystals: Extended pi-Conjugation and Structural Defects for Overall Water Splitting" Angewandte Chemie, International Edition in English, 61, no. 2, e202113389 (2022).
    [55] H. Fei, J. Shao, H. Li, N. Li, D. Chen, Q. Xu, J. He, and J. Lu, "Construction of ultra-thin 2D CN-Br0.12/2%RhOx photo-catalyst with rapid electron and hole separation for efficient bisphenol A degradation" Applied Catalysis B: Environmental, 299, (2021).
    [56] P. Qiu, C. Xu, H. Chen, F. Jiang, X. Wang, R. Lu, and X. Zhang, "One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity" (in English), Applied Catalysis B: Environmental, 206, 319–327 (2017).
    [57] L. Lin, C. Wang, W. Ren, H. Ou, Y. Zhang, and X. Wang, "Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks" Chem Sci, 8, no. 8, 5506–5511 (2017).
    [58] D. Zhou, B. Yu, Q. Chen, H. Shi, Y. Zhang, D. Li, X. Yang, W. Zhao, C. Liu, G. Wei, and Z. Chen, "Improved visible light photocatalytic activity on Z-scheme g-C3N4 decorated TiO2 nanotube arrays by a simple impregnation method" Materials Research Bulletin, 124, (2020).
    [59] K. M. Alam, P. Kumar, P. Kar, U. K. Thakur, S. Zeng, K. Cui, and K. Shankar, "Enhanced charge separation in g-C3N4-BiOI heterostructures for visible light driven photoelectrochemical water splitting" Nanoscale Adv, 1, no. 4, 1460–1471 (2019).
    [60] S. Bai, X. Wang, C. Hu, M. Xie, J. Jiang, and Y. Xiong, "Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis" Chem Commun (Camb), 50, no. 46, 6094–6097 (2014).
    [61] Y. Zhang, T. Mori, J. Ye, and M. Antonietti, "Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation" Journal of the American Chemical Society, 132, no. 18, 6294–6295 (2010).
    [62] S. El-Akaad, R. Morozov, M. Golovin, O. Bol'shakov, S. De Saeger, and N. Beloglazova, "A novel electrochemical sensor for the detection of fipronil and its toxic metabolite fipronil sulfone using TiO2-polytriazine imide submicrostructured composite as an efficient electrocatalyst" Talanta, 238, no. Pt 2, 123025 (2022).
    [63] X. Yan, J. Li, and H. Zhou, "Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies" Journal of Materials Science: Materials in Electronics, 30, no. 12, 11706–11713 (2019).
    [64] X. Yan, G. Ning, and P. Zhao, "Enhanced Visible Light Photocatalytic Reduction of Cr(VI) over a Novel Square Nanotube Poly(Triazine Imide)/TiO2 Heterojunction" Catalysts, 9, no. 1, (2019).
    [65] C.-H. Chen and K.-S. Chang, "Fabrication and Photodegradation Application of Isopropanol-Functionalized Poly (Triazine Imide)" (in English), Journal of Electronic Materials, 49, no. 2, 1518–1526 (2019).
    [66] Z. Zhang, K. Leinenweber, M. Bauer, L. A. Garvie, P. F. McMillan, and G. H. Wolf, "High-pressure bulk synthesis of crystalline C6N9H3•HCl: a novel C3N4 graphitic derivative" Journal of the American Chemical Society, 123, no. 32, 7788–7796 (2001).
    [67] W. H. Balmain, "XLVI. Observations on the formation of compounds of boron and silicon with nitrogen and certain metals" The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, no. 138, 270–277 (2009).
    [68] L. Pauling, "The Structure and Properties of Graphite and Boron Nitride" Proceedings of the National Academy of Sciences of the United States of America, 56, no. 6, 1646–1652 (1966).
    [69] T. Taniguchi, "Materials science research of boron nitride obtained at high pressure and high temperature" Journal of the Ceramic Society of Japan, 128, no. 9, 620–626 (2020).
    [70] T. E. O'Connor, "Synthesis of Boron Nitride" Journal of the American Chemical Society, 84, no. 9, 1753–1754 (1963).
    [71] J. Thomas, N. E. Weston, and T. E. O'Connor, "Turbostratic1 Boron Nitride, Thermal Transformation to Ordered-layer-lattice Boron Nitride" Journal of the American Chemical Society, 84, no. 24, 4619–4622 (1963).
    [72] A. Rabinkin, A. E. Shapiro, and M. Boretius, "Brazing of diamonds and cubic boron nitride." in Advances in Brazing, 2013, pp. 160–193.
    [73] Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, "Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure" Science, 317, no. 5840, 932–934 (2007).
    [74] D. Lee and S. H. Song, "Ultra-thin ultraviolet cathodoluminescent device based on exfoliated hexagonal boron nitride" (in en), RSC Advances, (2017).
    [75] E. Tsushima, T. Tsujimura, and T. Uchino, "Enhancement of the deep-level emission and its chemical origin in hexagonal boron nitride" Applied Physics Letters, 113, no. 3, (2018).
    [76] S. B. Song, S. Yoon, S. Y. Kim, S. Yang, S. Y. Seo, S. Cha, H. W. Jeong, K. Watanabe, T. Taniguchi, G. H. Lee, J. S. Kim, M. H. Jo, and J. Kim, "Deep-ultraviolet electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures" Nat Commun, 12, no. 1, 7134 (2021).
    [77] M. Sajjad, W. M. Jadwisienczak, and P. Feng, "Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector." Nanoscale, 6, no. 9, 4577–4582 (2014).
    [78] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, "Boron nitride nanotubes and nanosheets" ACS Nano, 4, no. 6, 2979–2993 (2010).
    [79] F. Xiao, S. Naficy, G. Casillas, M. H. Khan, T. Katkus, L. Jiang, H. Liu, H. Li, and Z. Huang, "Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels" Advanced Materials, 27, no. 44, 7196–7203 (2015).
    [80] L. H. Li, T. Xing, Y. Chen, and R. Jones, "Boron Nitride Nanosheets for Metal Protection" Advanced Materials Interfaces, 1, no. 8, (2014).
    [81] B. Singh, G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena, A. Singh, A. Thakur, and A. Kumar, "Nanostructured Boron Nitride with High Water Dispersibility for Boron Neutron Capture Therapy" Scientific Reports, 6, 1–10 (2016).
    [82] B. Gil, G. Cassabois, R. Cusco, G. Fugallo, and L. Artus, "Boron nitride for excitonics, nano photonics, and quantum technologies" Nanophotonics, 9, no. 11, 3483–3504 (2020).
    [83] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, "Unconventional superconductivity in magic-angle graphene superlattices" Nature, 556, no. 7699, 43–50 (2018).
    [84] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices" Nature, 556, no. 7699, 80–84 (2018).
    [85] J. Wang, F. Ma, and M. Sun, "Graphene, hexagonal boron nitride, and their heterostructures: properties and applications" RSC Advances, 10.1039/C7RA00260B, 7, no. 27, 16801–16822 (2017).
    [86] A. Pakdel, Y. Bando, and D. Golberg, "Nano boron nitride flatland" Chemical Society Reviews, 43, no. 3, 934–959 (2014).
    [87] R. T. Paine and C. K. Narula, "Synthetic routes to boron nitride" Chemical Reviews, 90, 73–91 (1990).
    [88] P. M. Revabhai, R. K. Singhal, H. Basu, and S. K. Kailasa, "Progress on boron nitride nanostructure materials: properties, synthesis and applications in hydrogen storage and analytical chemistry" Journal of Nanostructure in Chemistry, 13, no. 1, 1–41 (2022).
    [89] G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. J. R. Downey, G. L. Gardner, U. Krebs, and S. K. Singer, "Molten Salts: Volume 4, Part 2, Chlorides and Mixtures. Electrical Conductance, Density, Viscosity, and Surface Tension Data," 1975, vol. 4 issue 4.
    [90] X. Liu, N. Fechler, and M. Antonietti, "Salt melt synthesis of ceramics, semiconductors and carbon nanostructures" Chemical Society Reviews, 42, no. 21, 8237–8265 (2013).
    [91] D. L. Hildenbrand, W. F. Hall, F. Ju, and N. D. Potter, "Vapor Pressures and Vapor Thermodynamic Properties of Some Lithium and Magnesium Halides" The Journal of Chemical Physics, 40, no. 10, 2882–2890 (1964).
    [92] S. Wang, "Experimental Determination of Vapor Pressures of KCl" ECS Proceedings Volumes, 1994-13, no. 1, 146–155 (1994).
    [93] O. C. Bridgeman and E. W. Aldrich, "Vapor Pressure Tables for Water" Journal of Heat Transfer, 86, no. 2, 279–286 (1964).
    [94] S. K. Gupta and Y. Mao, "Recent Developments on Molten Salt Synthesis of Inorganic Nanomaterials: A Review" The Journal of Physical Chemistry C, 125, no. 12, 6508–6533 (2021).
    [95] L. Ye, L. Zhao, F. Liang, X. He, W. Fang, H. Chen, S. Zhang, and S. An, "Facile synthesis of hexagonal boron nitride nanoplates via molten-salt-mediated magnesiothermic reduction" Ceramics International, 41, no. 10, 14941–14948 (2015).
    [96] Y. Chen, X. Wang, C. Yu, J. Ding, C. Deng, and H. Zhu, "Low temperature synthesis via molten-salt method of r-BN nanoflakes, and their properties" Sci Rep, 9, no. 1, 16338 (2019).
    [97] M. Örnek, K. Wang, S. Xiang, C. Hwang, K. Y. Xie, and R. A. Haber, "Molten salt synthesis of highly ordered and nanostructured hexagonal boron nitride" Diamond and Related Materials, 93, 179–186 (2019).
    [98] L. Tian, J. Li, F. Liang, S. Chang, H. Zhang, M. Zhang, and S. Zhang, "Facile molten salt synthesis of atomically thin boron nitride nanosheets and their co-catalytic effect on the performance of carbon nitride photocatalyst" Journal of Colloid and Interface Science, 536, 664–672 (2019).
    [99] C. N. Rani, S. Karthikeyan, and S. Prince Arockia Doss, "Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment - A review" Chemical Engineering and Processing - Process Intensification, 165, (2021).
    [100] H. Zhang, Y. Zheng, S. Yu, W. Chen, and J. Yang, "A Review of Advancing Two-Dimensional Material Membranes for Ultrafast and Highly Selective Liquid Separation" Nanomaterials (Basel), 12, no. 12, (2022).
    [101] P. Chavalekvirat, W. Hirunpinyopas, K. Deshsorn, K. Jitapunkul, and P. Iamprasertkun, "Liquid Phase Exfoliation of 2D Materials and Its Electrochemical Applications in the Data-Driven Future" Precis Chem, 2, no. 7, 300–329 (2024).
    [102] A. A. Coelho, "TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++" Journal of Applied Crystallography, 51, no. 1, 210–218 (2018).
    [103] D. R. Mitchell, "DiffTools: electron diffraction software tools for DigitalMicrograph" Microscopy Research and Technique, 71, no. 8, 588–593 (2008).
    [104] A. Herrera-Gomez, "The XPSOasis Platform" Journal of Surface Analysis, 29, no. 3, 144–145 (2023).
    [105] A. Herrera‐Gomez, M. Bravo‐Sanchez, O. Ceballos‐Sanchez, and M. O. Vazquez‐Lepe, "Practical methods for background subtraction in photoemission spectra" Surface and Interface Analysis, 46, no. 10-11, 897–905 (2014).
    [106] G. Greczynski and L. Hultman, "Compromising Science by Ignorant Instrument Calibration-Need to Revisit Half a Century of Published XPS Data" Angewandte Chemie, International Edition in English, 59, no. 13, 5002–5006 (2020).
    [107] T. R. Gengenbach, G. H. Major, M. R. Linford, and C. D. Easton, "Practical guides for x-ray photoelectron spectroscopy (XPS): Interpreting the carbon 1s spectrum" (in English), Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 39, no. 1, (2021).
    [108] M. H. Engelhard, D. R. Baer, A. Herrera-Gomez, and P. M. A. Sherwood, "Introductory guide to backgrounds in XPS spectra and their impact on determining peak intensities" Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 38, no. 6, (2020).
    [109] G. H. Major, N. Fairley, P. M. A. Sherwood, M. R. Linford, J. Terry, V. Fernandez, and K. Artyushkova, "Practical guide for curve fitting in x-ray photoelectron spectroscopy" Journal of Vacuum Science & Technology A, 38, no. 6, (2020).
    [110] "Reviews in Fluorescence 2017 (Reviews in Fluorescence). 2018).
    [111] L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, and C. G. Van de Walle, "Native point defects and impurities in hexagonal boron nitride" Physical Review B, 97, no. 21, (2018).
    [112] J. R. Reimers, J. Shen, M. Kianinia, C. Bradac, I. Aharonovich, M. J. Ford, and P. Piecuch, "Photoluminescence, photophysics, and photochemistry of the VB− defect in hexagonal boron nitride" Physical Review B, 102, no. 14, (2020).
    [113] N. Mendelson, Z. Q. Xu, T. T. Tran, M. Kianinia, J. Scott, C. Bradac, I. Aharonovich, and M. Toth, "Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride" ACS Nano, 13, no. 3, 3132–3140 (2019).
    [114] S. Li and A. Gali, "Identification of an Oxygen Defect in Hexagonal Boron Nitride" J Phys Chem Lett, 13, no. 41, 9544–9551 (2022).
    [115] T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, "Quantum emission from hexagonal boron nitride monolayers" Nat Nanotechnol, 11, no. 1, 37–41 (2016).
    [116] J. B. Coulter and D. P. Birnie, "Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System" physica status solidi (b), 255, no. 3, (2017).
    [117] S. K. Suram, P. F. Newhouse, and J. M. Gregoire, "High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis" ACS Comb Sci, 18, no. 11, 673–681 (2016).
    [118] C. Kittel, "Introduction to solid state physics." 8th ed. Hoboken, NJ: Wiley, xix, 680 p. (2005).
    [119] S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, and G. D. Scholes, "Emergent properties resulting from Type-II band alignment in semiconductor nanoheterostructures" Advanced Materials, 23, no. 2, 180–197 (2011).
    [120] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, "Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations" Chemical Society Reviews, 44, no. 10, 2893–2939 (2015).
    [121] W. H. Koppenol, D. M. Stanbury, and P. L. Bounds, "Electrode potentials of partially reduced oxygen species, from dioxygen to water" Free Radic Biol Med, 49, no. 3, 317–322 (2010).
    [122] O. Carp, "Photoinduced reactivity of titanium dioxide" (in English), Progress in Solid State Chemistry, 32, no. 1-2, 33–177 (2004).
    [123] M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production" (in English), Renewable and Sustainable Energy Reviews, 11, no. 3, 401–425 (2007).
    [124] K. Maeda and K. Domen, "Photocatalytic Water Splitting: Recent Progress and Future Challenges" (in English), The Journal of Physical Chemistry Letters, 1, no. 18, 2655–2661 (2010).
    [125] A. Garcia-Miranda Ferrari, D. A. C. Brownson, A. S. Abo Dena, C. W. Foster, S. J. Rowley-Neale, and C. E. Banks, "Tailoring the electrochemical properties of 2D-hBN via physical linear defects: physicochemical, computational and electrochemical characterisation" Nanoscale Adv, 2, no. 1, 264–273 (2020).
    [126] Y. Si and E. T. Samulski, "Exfoliated Graphene Separated by Platinum Nanoparticles" (in English), Chemistry of Materials, 20, no. 21, 6792–6797 (2008).
    [127] F. Geng, R. Ma, Y. Ebina, Y. Yamauchi, N. Miyamoto, and T. Sasaki, "Gigantic swelling of inorganic layered materials: a bridge to molecularly thin two-dimensional nanosheets" Journal of the American Chemical Society, 136, no. 14, 5491–5500 (2014).
    [128] A. J. Clancy, T. M. Suter, A. Taylor, S. Bhattacharya, T. S. Miller, V. Brázdová, A. E. Aliev, A. A. P. Chauvet, F. Corà, C. A. Howard, and P. F. McMillan, "Understanding spontaneous dissolution of crystalline layered carbon nitride for tuneable photoluminescent solutions and glasses" (in English), Journal of Materials Chemistry A, 9, no. 4, 2175–2183 (2021).
    [129] J. Kim, S. Kwon, D. H. Cho, B. Kang, H. Kwon, Y. Kim, S. O. Park, G. Y. Jung, E. Shin, W. G. Kim, H. Lee, G. H. Ryu, M. Choi, T. H. Kim, J. Oh, S. Park, S. K. Kwak, S. W. Yoon, D. Byun, Z. Lee, and C. Lee, "Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control" Nat Commun, 6, 8294 (2015).
    [130] S. Alam, M. Asaduzzaman Chowdhury, A. Shahid, R. Alam, and A. Rahim, "Synthesis of emerging two-dimensional (2D) materials – Advances, challenges and prospects" FlatChem, 30, (2021).
    [131] T. Suter, V. Brázdová, K. McColl, T. S. Miller, H. Nagashima, E. Salvadori, A. Sella, C. A. Howard, C. W. M. Kay, F. Corà, and P. F. McMillan, "Synthesis, Structure and Electronic Properties of Graphitic Carbon Nitride Films" The Journal of Physical Chemistry C, 122, no. 44, 25183–25194 (2018).
    [132] P. J. Larkin, M. P. Makowski, and N. B. Colthup, "The form of the normal modes of s-triazine: infrared and Raman spectral analysis and ab initio force field calculations" (in English), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, no. 5, 1011–1020 (1999).
    [133] "Infrared spectra of mineral species (Springer Geochemistry/Mineralogy). 2014).
    [134] X. Yuan, K. Luo, K. Zhang, J. He, Y. Zhao, and D. Yu, "Combinatorial Vibration-Mode Assignment for the FTIR Spectrum of Crystalline Melamine: A Strategic Approach toward Theoretical IR Vibrational Calculations of Triazine-Based Compounds" Journal of Physical Chemistry A, 120, no. 38, 7427–7433 (2016).
    [135] M. Ayiania, M. Smith, A. J. R. Hensley, L. Scudiero, J.-S. McEwen, and M. Garcia-Perez, "Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles" (in English), Carbon, 162, 528–544 (2020).
    [136] A. Savateev, S. Pronkin, J. D. Epping, M. G. Willinger, C. Wolff, D. Neher, M. Antonietti, and D. Dontsova, "Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride‐like Materials for More Efficient Solar Hydrogen and Oxygen Evolution" (in English), ChemCatChem, 9, no. 1, 167–174 (2016).
    [137] G. Algara-Siller, N. Severin, S. Y. Chong, T. Bjorkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, and M. J. Bojdys, "Triazine-based graphitic carbon nitride: a two-dimensional semiconductor" Angewandte Chemie, International Edition in English, 53, no. 29, 7450–7455 (2014).
    [138] D. Courcot, L. o. Gengembre, M. Guelton, Y. Barbaux, and B. Grzybowska, "Effect of potassium on the surface potential of titania" Journal of the Chemical Society, Faraday Transactions, 90, no. 6, (1994).
    [139] R. Nawaz, C. F. Kait, H. Y. Chia, M. H. Isa, L. W. Huei, N. T. Sahrin, and N. Khan, "Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants" Surfaces and Interfaces, 32, (2022).
    [140] D. B. Williams and C. B. Carter, "Transmission Electron Microscopy. 2009).
    [141] Q. Weng, B. Wang, X. Wang, N. Hanagata, X. Li, D. Liu, X. Wang, X. Jiang, Y. Bando, and D. Golberg, "Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery" ACS Nano, 8, no. 6, 6123–6130 (2014).
    [142] I. Jiménez, A. F. Jankowski, L. J. Terminello, D. G. J. Sutherland, J. A. Carlisle, G. L. Doll, W. M. Tong, D. K. Shuh, and F. J. Himpsel, "Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride" Physical Review B, 55, no. 18, 12025–12037 (1997).
    [143] V. Guerra, C. Wan, V. Degirmenci, J. Sloan, D. Presvytis, and T. McNally, "2D boron nitride nanosheets (BNNS) prepared by high-pressure homogenisation: structure and morphology" Nanoscale, 10, no. 41, 19469–19477 (2018).
    [144] J. C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, and U. Kaiser, "Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes" Nano Letters, 9, no. 7, 2683–2689 (2009).
    [145] H. Y. Chao, A. M. Nolan, A. T. Hall, D. Golberg, C. Park, W. D. Yang, Y. Mo, R. Sharma, and J. Cumings, "Resistance of Boron Nitride Nanotubes to Radiation-Induced Oxidation" J Phys Chem C Nanomater Interfaces, 128, no. 43, 18328–18337 (2024).
    [146] G. H. Ryu, H. J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H. S. Shin, C. W. Bielawski, R. S. Ruoff, S. Hong, and Z. Lee, "Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation" Nanoscale, 7, no. 24, 10600–10605 (2015).
    [147] A. P. Grosvenor, E. M. Bellhouse, A. Korinek, M. Bugnet, and J. R. McDermid, "XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4" Applied Surface Science, 379, 242–248 (2016).
    [148] R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, "Hunting for monolayer boron nitride: optical and Raman signatures" Small, 7, no. 4, 465–468 (2011).
    [149] L. Museur, E. Feldbach, and A. Kanaev, "Defect-related photoluminescence of hexagonal boron nitride" Physical Review B, 78, no. 15, (2008).
    [150] Y. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan, J. C. Jiang, and X. Q. Pan, "Probing domain microstructure in ferroelectric Bi4Ti3O12 thin films by optical second harmonic generation" Journal of Applied Physics, 89, no. 2, 1387–1392 (2001).
    [151] Y. Barad, J. Lettieri, C. D. Theis, D. G. Schlom, V. Gopalan, J. C. Jiang, and X. Q. Pan, "Erratum: “Probing domain microstructure in ferroelectric Bi4Ti3O12 thin films by optical second harmonic generation” [J. Appl. Phys. 89, 1387 (2001)]" Journal of Applied Physics, 89, no. 9, 5230–5230 (2001).
    [152] D. K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, and S. Lettieri, "Photoluminescence Mechanisms in Anatase and Rutile TiO2" The Journal of Physical Chemistry C, 121, no. 16, 9011–9021 (2017).
    [153] H. Zhang, Y. Xu, H. Li, W. Shi, X. Li, and H. Ma, "New rhodamines with changeable π-conjugation for lengthening fluorescence wavelengths and imaging peroxynitrite" Chem, 8, no. 1, 287–295 (2022).
    [154] O. F. Bicer, R. Lomlu, F. Katmer, and S. Süzer, "Franck–Condon Factors in Electronic Excitations from the Ground and Excited Vibrational States Are Different" Journal of Chemical Education, 100, no. 6, 2423–2429 (2023).
    [155] U. Jinendra, D. Bilehal, B. M. Nagabhushana, and A. P. Kumar, "Adsorptive removal of Rhodamine B dye from aqueous solution by using graphene-based nickel nanocomposite" Heliyon, 7, no. 4, e06851 (2021).
    [156] X. Yan, J. Qin, G. Ning, J. Li, T. Ai, X. Su, and Z. Wang, "A novel poly(triazine imide) hollow tube/ZnO heterojunction for tetracycline hydrochloride degradation under visible light irradiation" Advanced Powder Technology, 30, no. 2, 359–365 (2019).
    [157] B. O'Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature, 353, no. 6346, 737–740 (1991).
    [158] A. Jakimińska, M. Pawlicki, and W. Macyk, "Photocatalytic transformation of Rhodamine B to Rhodamine-110 – The mechanism revisited" Journal of Photochemistry and Photobiology A: Chemistry, 433, (2022).
    [159] H. D. Tran, D. Q. Nguyen, P. T. Do, and U. N. P. Tran, "Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach" RSC Adv, 13, no. 25, 16915–16925 (2023).
    [160] J. Li, S. He, W. Dai, M. Chen, Q. Jiang, X. Chen, C. Wang, C. Tang, Y. Liu, and T. Wu, "Fabrication of fluorescent dyes supported on porous boron nitride nanosheets and their excellent photoluminescence properties" Materials Technology, 35, no. 11-12, 691–696 (2017).
    [161] Ministry of Environment, Taiwan. (2024, January 9). Effluent Standards [web page]. Available: oaout.moenv.gov.tw/law/EngLawContent.aspx?lan=E&id=343
    [162] P. Tao, Y. Xu, C. Song, Y. Yin, Z. Yang, S. Wen, S. Wang, H. Liu, S. Li, C. Li, T. Wang, and M. Shao, "A novel strategy for the removal of rhodamine B (RhB) dye from wastewater by coal-based carbon membranes coupled with the electric field" Separation and Purification Technology, 179, 175–183 (2017).
    [163] W. Zheng, C. Ye, M. Yu, S. Yang, Y. Xiu, X. He, H. Xue, J. Xia, R. Gao, Z. Yuan, and L. Wang, "Fabrication of metal-doped graphite phase carbon nitride-based membrane and its application" Advanced Composites and Hybrid Materials, 8, no. 1, (2024).
    [164] R. Labied, F. Touahra, S. Hazam, M. Ouraghi, R. Chebout, K. Bachari, and D. Lerari, "Synergy effect in blend Orange G/Rhodamine B ultrafiltration, using natural bentonite-based membrane" Water Practice & Technology, 18, no. 12, 3315–3332 (2023).
    [165] S. Saja, A. Bouazizi, B. Achiou, H. Ouaddari, A. Karim, M. Ouammou, A. Aaddane, J. Bennazha, and S. Alami Younssi, "Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal" Journal of the European Ceramic Society, 40, no. 6, 2453–2462 (2020).
    [166] H. M. Abbas, R. M. Kamel, M. E. A. Ali, A. H. Atta, H. M. A. Hassan, and A. Shahat, "Fabrication of polysulfone/carbon nanospheres ultrafiltration membranes for removing some dyes from aqueous solutions" Desalination and Water Treatment, 193, 57–63 (2020).
    [167] C. Chen, J. Wang, D. Liu, C. Yang, Y. Liu, R. S. Ruoff, and W. Lei, "Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation" Nat Commun, 9, no. 1, 1902 (2018).
    [168] J. Jiang, J. Zhang, J. Zhang, J. Wang, M. Xu, D. Song, and Y. Jiang, "Membrane Filtration-Pyrolysis-Mass Spectrometry for the Detection of Micro/Nano Plastics in Seawater" Chemical Research in Chinese Universities, 41, no. 5, 1225–1233 (2025).
    [169] Z. Yu, Y. Li, Y. Zhang, P. Xu, C. Lv, W. Li, B. Maryam, X. Liu, and S. C. Tan, "Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production" Nat Commun, 15, no. 1, 6081 (2024).
    [170] A. E. Dodd and D. Murfin, "Dictionary of Ceramics. Institute of Materials1994).
    [171] S. S. Cole, "The Conversion of Quartz into Cristobalite Below 1000°C, and Some Properties of the Cristobalite Formed*" Journal of the American Ceramic Society, 18, no. 1-12, 149–154 (2006).
    [172] B. Mishra and D. L. Olson, "Corrosion of Refractory Alloys in Molten Lithium and Lithium Chloride" Mineral Processing and Extractive Metallurgy Review, 22, no. 2, 369–388 (2001).
    [173] N. Gese and B. Pesic, "Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems." presented at the 2013 TMS Annual Meeting and Exhibition, 2013.
    [174] W. Ding, A. Bonk, and T. Bauer, "Molten chloride salts for next generation CSP plants: Selection of promising chloride salts & study on corrosion of alloys in molten chloride salts." presented at the SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems, 2019.

    QR CODE