| 研究生: |
黃郁珊 Huang, Yu-Shan |
|---|---|
| 論文名稱: |
利用液相層析串聯式質譜儀平行反應監測法相對定量兒茶酚雌激素與人類血清白蛋白的共價修飾程度 Relative quantification of the conjugation level of catechol estrogen in circulating blood with human serum albumin by LC-MS/MS using parallel reaction monitoring |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 兒茶酚雌激素 、人類血清白蛋白 、共價修飾程度 、平行反應監測模式 |
| 外文關鍵詞: | Catechol Estrogen (CE), human serum albumin(HSA), conjugation level, parallel reaction monitoring(PRM) |
| 相關次數: | 點閱:171 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻指出兒茶酚雌激素(Catechol Estrogen, CE)共價修飾是雌激素失衡和癌症的潛在生物標誌,而兒茶酚雌激素代謝物:高活性的醌類(quinone)致癌性物質,已被證實能夠與血清白蛋白上的離胺酸 (Lysine, K)、半胱胺酸 (Cysteine, C)和組胺酸(Histidine, H)進行共價鍵結形成雌激素修飾蛋白,由於蛋白具有較長的半生期,因此測量蛋白上的加成物更能反應出這些化學致癌物的水平。
本篇論文開發利用平行反應監測模式(PRM)來去偵測雌激素化蛋白,並定量血清白蛋白上兒茶酚雌激素的共價修飾程度,並應用在臨床樣品上評估其可行性。在此,我們證明了雌激素與HSA的共價修飾程度可以用來測定人類血液中循環兒茶酚雌激素水平。透過加入一系列不同濃度的兒茶酚雌激素與血清一起活化,產生各種共軛-CE/HSA比例,透過完整蛋白質的測量與分析,可以得到兩個線性良好的濃度範圍: 0-19μg/mL (R2=0.97)與57-1900 μg/mL (R2=0.99);接著用胰凝乳蛋白酶與胰蛋白酶的消化,並利用nano-LC Q-Orbitrap平行反應模式(精確的MS2質量<0.05Da)靶向定量C34、K20、K378位點片段(胰凝乳蛋白酶);K20、C34、K73、K281、H338、K378位點片段(胰蛋白酶)的修飾與未修飾片段。透過胰凝乳蛋白酶的消化,透過兩種共價程度位點之合併的計算(共價程度/Site、共價程度/HSA),皆會得到良好的線性且RSD下降,但與完整蛋白斜率趨勢相反;而與胰凝乳蛋白酶相比,胰蛋白酶能夠得到更低的定量極限,且RSD較小(C34:2.96-28.90%),與共軛-CE/HSA相比,在低濃度下數據趨近吻合(斜率=1.9),主要為C34之貢獻,且R2>0.99。最後,我們將此方法應用在代謝異常病患與健康者的血清臨床樣品上,在完整蛋白分析,病患平均皆比健康者高,p值為0.000379,顯示兩者有顯著差異;使用胰蛋白酶部分,雖然經T.Test測試目前並無顯著差異,但病患平均可以看到比健康者高。我們證明了雌激素與HSA的共價修飾程度可以用來測定人類血液中循環兒茶酚雌激素水平。
Recent study points out that covalent modification of Catechol Estrogen (CE) is an estrogen imbalance and a potential biomarker for cancer. In this study, a method developed to detect and relative quantitative CEs-adducted serum proteins based on LC-MS/MS using parallel reaction monitoring (PRM). Instead of free estrogen molecules, the protein has a longer half-life, CEs-adducted serum proteins are more able to reflect these chemical carcinogen levels in blood.
Blood serum was added a series of concentrations of CEs to yield various conjugated-CE/HSA ratios’ serum standards. Through the measurement and analysis of intact proteins, exhibited two good linearity could be obtained: 0-19 μg/mL (R2=0.97) and 57-1900 μg/mL (R2=0.99). These serum standards were cleaned up by trichloroacetic acid (TCA) and digested by chymotrypsin and trypsin. In bottom-up analysis three conjugated and non-conjugated peptide pairs covering the site of K20、C34、K378 for chymotrypsin and six conjugated and non-conjugated peptide pairs covering the site of K20、C34、K73、K281、H338、K378 for trypsin were identified and targeted by PRM with accurate fragment mass (<0.05 Da), using nanoLC QE-Orbitrap. In the two- different enzymes system, the conjugation level/ site and conjugation level/ HSA derived from 18 fragments (chymotrypsin) and 63 fragments (trypsin) were revealed to have good linearity and RSD. However, the limit of quantification and the RSD calculated in the trypsin system were lower than it was in the chymotrypsin system.
Compared with the conjugated-CE/HSA, the data was close to the agreement at the low concentration (slope=1.9), mainly contribution was the site of C34 and had good linearity (R2=0.99). The method was applied to clinical samples to detect conjugation level in serum on 10 healthy individuals and 10 patients. In the intact protein analysis, patient conjugation level could see the significant difference (p=0.000379). In the bottom-up analysis, we can not see the significant difference between the T.Test but the average of patient can be seen to be higher than healthy.
1. Wilkins, M. R.; Sanchez, J. C.; Gooley, A. A.; Appel, R. D.; Humphery-Smith, I.; Hochstrasser, D. F.; Williams, K. L., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 1996, 13, 19-50.
2. Karch, K. R.; Sidoli, S.; Garcia, B. A., Identification and Quantification of Histone PTMs Using High-Resolution Mass Spectrometry. Methods Enzymol 2016, 574, 3-29.
3. Yang, Z.; Li, N., Absolute quantitation of protein posttranslational modification isoform. Methods Mol Biol 2015, 1306, 105-19.
4. Cavalieri, E. L.; Rogan, E. G., Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin Transl Med 2016, 5 (1), 12.
5. Zahid, M.; Kohli, E.; Saeed, M.; Rogan, E.; Cavalieri, E., The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: implications for tumor-initiating activity. Chem Res Toxicol 2006, 19 (1), 164-72.
6. Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci 2015, 148 (2), 433-42.
7. Blair, I. A., Analysis of estrogens in serum and plasma from postmenopausal women: past present, and future. Steroids 2010, 75 (4-5), 297-306.
8. Wang, R.; Chon, H.; Lee, S.; Cheng, Z.; Hong, S. H.; Yoon, Y. H.; Choo, J., Highly Sensitive Detection of Hormone Estradiol E2 Using Surface-Enhanced Raman Scattering Based Immunoassays for the Clinical Diagnosis of Precocious Puberty. ACS Appl Mater Interfaces 2016, 8 (17), 10665-72.
9. Lee, J. S.; Ettinger, B.; Stanczyk, F. Z.; Vittinghoff, E.; Hanes, V.; Cauley, J. A.; Chandler, W.; Settlage, J.; Beattie, M. S.; Folkerd, E.; Dowsett, M.; Grady, D.; Cummings, S. R., Comparison of methods to measure low serum estradiol levels in postmenopausal women. J Clin Endocrinol Metab 2006, 91 (10), 3791-7.
10. Santen, R. J.; Demers, L.; Ohorodnik, S.; Settlage, J.; Langecker, P.; Blanchett, D.; Goss, P. E.; Wang, S., Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids 2007, 72 (8), 666-71.
11. Xu, X.; Roman, J. M.; Issaq, H. J.; Keefer, L. K.; Veenstra, T. D.; Ziegler, R. G., Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem 2007, 79 (20), 7813-21.
12. Gandhi, A.; Guttikar, S.; Trivedi, P., High-sensitivity simultaneous liquid chromatography-tandem mass spectrometry assay of ethinyl estradiol and levonorgestrel in human plasma. J Pharm Anal 2015, 5 (5), 316-326.
13. Schioler, V.; Thode, J., Six direct radioimmunoassays of estradiol evaluated. Clin Chem 1988, 34 (5), 949-52.
14. Rinaldi, S.; Dechaud, H.; Biessy, C.; Morin-Raverot, V.; Toniolo, P.; Zeleniuch-Jacquotte, A.; Akhmedkhanov, A.; Shore, R. E.; Secreto, G.; Ciampi, A.; Riboli, E.; Kaaks, R., Reliability and validity of commercially available, direct radioimmunoassays for measurement of blood androgens and estrogens in postmenopausal women. Cancer Epidemiol Biomarkers Prev 2001, 10 (7), 757-65.
15. Geisler, J.; Ekse, D.; Helle, H.; Duong, N. K.; Lonning, P. E., An optimised, highly sensitive radioimmunoassay for the simultaneous measurement of estrone, estradiol and estrone sulfate in the ultra-low range in human plasma samples. J Steroid Biochem Mol Biol 2008, 109 (1-2), 90-5.
16. Rosner, W.; Hankinson, S. E.; Sluss, P. M.; Vesper, H. W.; Wierman, M. E., Challenges to the measurement of estradiol: an endocrine society position statement. J Clin Endocrinol Metab 2013, 98 (4), 1376-87.
17. Kushnir, M. M.; Rockwood, A. L.; Bergquist, J.; Varshavsky, M.; Roberts, W. L.; Yue, B.; Bunker, A. M.; Meikle, A. W., High-sensitivity tandem mass spectrometry assay for serum estrone and estradiol. Am J Clin Pathol 2008, 129 (4), 530-9.
18. Wang, Q.; Rangiah, K.; Mesaros, C.; Snyder, N. W.; Vachani, A.; Song, H.; Blair, I. A., Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry. Steroids 2015, 96, 140-52.
19. Kyrou, I.; Randeva, H. S.; Tsigos, C.; Kaltsas, G.; Weickert, M. O., Clinical Problems Caused by Obesity. In Endotext, Feingold, K. R.; Anawalt, B.; Boyce, A.; Chrousos, G.; Dungan, K.; Grossman, A.; Hershman, J. M.; Kaltsas, G.; Koch, C.; Kopp, P.; Korbonits, M.; McLachlan, R.; Morley, J. E.; New, M.; Perreault, L.; Purnell, J.; Rebar, R.; Singer, F.; Trence, D. L.; Vinik, A.; Wilson, D. P., Eds. South Dartmouth (MA), 2000.
20. Calle, E. E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M. J., Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003, 348 (17), 1625-38.
21. Yates, J. R.; Ruse, C. I.; Nakorchevsky, A., Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 2009, 11, 49-79.
22. van Landeghem, A. A.; Poortman, J.; Nabuurs, M.; Thijssen, J. H., Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res 1985, 45 (6), 2900-6.
23. McTiernan, A.; Rajan, K. B.; Tworoger, S. S.; Irwin, M.; Bernstein, L.; Baumgartner, R.; Gilliland, F.; Stanczyk, F. Z.; Yasui, Y.; Ballard-Barbash, R., Adiposity and sex hormones in postmenopausal breast cancer survivors. J Clin Oncol 2003, 21 (10), 1961-6.
24. Yee, D.; Lee, A. V., Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia 2000, 5 (1), 107-15.
25. Lorincz, A. M.; Sukumar, S., Molecular links between obesity and breast cancer. Endocr Relat Cancer 2006, 13 (2), 279-92.
26. Sabbioni, G.; Turesky, R. J., Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chem Res Toxicol 2017, 30 (1), 332-366.
27. Guizado, T. R., Analysis of the structure and dynamics of human serum albumin. J Mol Model 2014, 20 (10), 2450.
28. Stewart, A. J.; Blindauer, C. A.; Berezenko, S.; Sleep, D.; Tooth, D.; Sadler, P. J., Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS J 2005, 272 (2), 353-62.
29. Coussons, P. J.; Jacoby, J.; McKay, A.; Kelly, S. M.; Price, N. C.; Hunt, J. V., Glucose modification of human serum albumin: a structural study. Free Radic Biol Med 1997, 22 (7), 1217-27.
30. Barnaby, O. S.; Cerny, R. L.; Clarke, W.; Hage, D. S., Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 2011, 412 (3-4), 277-85.
31. Wild, C. P., Environmental exposure measurement in cancer epidemiology. Mutagenesis 2009, 24 (2), 117-125.
32. Funk, W. E.; Li, H.; Iavarone, A. T.; Williams, E. R.; Riby, J.; Rappaport, S. M., Enrichment of cysteinyl adducts of human serum albumin. Anal Biochem 2010, 400 (1), 61-8.
33. Grigoryan, H.; Edmands, W. M. B.; Lan, Q.; Carlsson, H.; Vermeulen, R.; Zhang, L.; Yin, S. N.; Li, G. L.; Smith, M. T.; Rothman, N.; Rappaport, S. M., Adductomic signatures of benzene exposure provide insights into cancer induction. Carcinogenesis 2018, 39 (5), 661-668.
34. Noort, D.; Hulst, A. G.; Jansen, R., Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin. Arch Toxicol 2002, 76 (2), 83-8.
35. Keire, D. A.; Mariappan, S. V.; Peng, J.; Rabenstein, D. L., Nuclear magnetic resonance studies of the binding of captopril and penicillamine by serum albumin. Biochem Pharmacol 1993, 46 (6), 1059-69.
36. Joyce, D. A.; Day, R. O., D-penicillamine and D-penicillamine-protein disulphide in plasma and synovial fluid of patients with rheumatoid arthritis. Br J Clin Pharmacol 1990, 30 (4), 511-7.
37. Ivanov, A. I.; Christodoulou, J.; Parkinson, J. A.; Barnham, K. J.; Tucker, A.; Woodrow, J.; Sadler, P. J., Cisplatin binding sites on human albumin. J Biol Chem 1998, 273 (24), 14721-30.
38. Regazzoni, L. G.; Grigoryan, H.; Ji, Z.; Chen, X.; Daniels, S. I.; Huang, D.; Sanchez, S.; Tang, N.; Sille, F. C.; Iavarone, A. T.; Williams, E. R.; Zhang, L.; Rappaport, S. M., Using lysine adducts of human serum albumin to investigate the disposition of exogenous formaldehyde in human blood. Toxicol Lett 2017, 268, 26-35.
39. Guengerich, F. P.; Arneson, K. O.; Williams, K. M.; Deng, Z.; Harris, T. M., Reaction of aflatoxin B(1) oxidation products with lysine. Chem Res Toxicol 2002, 15 (6), 780-92.
40. Toby, T. K.; Fornelli, L.; Kelleher, N. L., Progress in Top-Down Proteomics and the Analysis of Proteoforms. Annu Rev Anal Chem (Palo Alto Calif) 2016, 9 (1), 499-519.
41. Wasinger, V. C.; Zeng, M.; Yau, Y., Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics 2013, 2013, 180605.
42. Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003, 21 (6), 660-6.
43. Pham, T. V.; Piersma, S. R.; Oudgenoeg, G.; Jimenez, C. R., Label-free mass spectrometry-based proteomics for biomarker discovery and validation. Expert Rev Mol Diagn 2012, 12 (4), 343-59.
44. Bantscheff, M.; Lemeer, S.; Savitski, M. M.; Kuster, B., Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012, 404 (4), 939-65.
45. Banerjee, S.; Mazumdar, S., Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012, 2012, 282574.
46. Lacorte, S.; Fernandez-Alba, A. R., Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrom Rev 2006, 25 (6), 866-80.
47. Domon, B.; Aebersold, R., Mass spectrometry and protein analysis. Science 2006, 312 (5771), 212-7.
48. Rauniyar, N., Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int J Mol Sci 2015, 16 (12), 28566-81.
49. Zhou, J.; Yin, Y., Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 2016, 141 (23), 6362-6373.
50. Bar-Or, D.; Heyborne, K. D.; Bar-Or, R.; Rael, L. T.; Winkler, J. V.; Navot, D., Cysteinylation of maternal plasma albumin and its association with intrauterine growth restriction. Prenat Diagn 2005, 25 (3), 245-9.
51. Sang, H.; Lu, G.; Liu, Y.; Hu, Q.; Xing, W.; Cui, D.; Zhou, F.; Zhang, J.; Hao, H.; Wang, G.; Ye, H., Conjugation site analysis of antibody-drug-conjugates (ADCs) by signature ion fingerprinting and normalized area quantitation approach using nano-liquid chromatography coupled to high resolution mass spectrometry. Anal Chim Acta 2017, 955, 67-78.