簡易檢索 / 詳目顯示

研究生: 吳柏農
Wu, Po-Nung
論文名稱: 基於渾沌進化演算論之有效影像軌跡為基礎的點追蹤器
A Trajectory-based Point Tracker Using Chaos Evolutionary Programming
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 點追蹤混沌進化演算論雙線性內插多項式插補
外文關鍵詞: chaos, Point tracking, evolutionary programming, polynomial interpolation, bilinear interpolation
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用渾沌進化演算論(chaos evolutionary programming)產生一個有效影像序列軌跡為基礎的點追蹤演算法。對傳統追蹤影像中目標物的運行限制,如不變形固態或較小的運動變化已有先前的方法來解決。然而提出的演算法可以印証出在連續的影像序列上追蹤目標的點相似性有較好的效率。它以chaos evolutionary programming 為主要架構,建立含運動模組、物體縮放標準與多項式插補應用的準則為輔,使得我們的追蹤器能夠適用於目標物在旋轉、位移、遮蔽物、縮小與放大狀態下可以準確地追蹤目標。其中,運動模組是用來定義運動軌跡的法則;而物體縮放標準主要是以雙線性內插法來針對目標物發生形體縮放狀態的解決方式,另外,提出的多項式插補的用途,主要是針對其特性用來重建完整的追蹤軌跡,因而當遮蔽物出現時,追蹤器亦能準確的估測目標位置,同時也有效的改善追蹤所需花費的時間。我們的實驗數據顯示此提出的演算法可以在各種不同的環境狀態下得到準確的結果。

    A trajectory-based point tracker using chaos evolutionary programming (CEP) algorithm is proposed in this thesis. While motion constraints such as rigidity and small motion which are imposed by previous approaches are liberated, the proposed CEP is proved to be effective for establishing point correspondence between two consecutive frames sampled at a fixed interval. The whole point trajectory within the sample interval is then reconstructed by polynomial interpolation. Our experimental results demonstrate that the proposed point tracker can accurately locate target under different kinds of situations like object deformation, occlusion, and sudden motion as well.

    Abstract ii Table of Contents iv List of Tables vi List of Figures vii Chapter 1 Introduction 1 Chapter 2 Backgroud 4 2.1 PROBLEM FORMULATION 4 2.1.1 Motion model 5 2.1.2 Feature matching 7 2.1.2.1 bilinear interpolation 8 2.1.3 Polynomial interpolation 12 2.1.3.1 application to construct point trajectory 12 2.2 CHAOS EVOLUTIONARY PROGRAMMING 15 2.2.1 The chaos optimization algorithm 15 2.2.2 The chaos evolutionary programming algorithm 18 Chapter 3 The proposed point tracker 26 3.1 POINT CORRESPONDENCE BY CEP 27 3.2 DEALING WITH IRREGULARITIES 31 3.3 PROPOSED ALGORITHM 33 Chapter 4 Experimental Results 36 Chapter 5 Conclusions and Future Works 55 5.1 CONCLUSIONS 55 5.2 FUTURE WORKS 55 Reference 57

    [1] Y. Wang and G. Baciu, “Human motion estimation from monocular image sequence based on cross-entropy regularization,” Pattern Recognition Letters, vol. 24, no. 1-3, pp. 315-325, Jan. 2003.
    [2] Y. Mezouar and F. Chaumette, “Model-free optimal trajectories in the image space: application to robot vision control,” Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 1, pp.I-1155–I-1162, Dec. 2001
    [3] P. Sturm, “Structure and motion for dynamic scenes - the case of points moving in planes,” Proc. Eur. Conf. Computer Vision, vol. 2, pp. 867-882, 2002.
    [4] C. Regazzoni, V. Ramesh, and G. Foresti, “Special issue on video communications, processing, and understanding for third generation surveillance systems,” Proc. IEEE, vol. 89, no. 10, pp. 1355-1539, Oct. 2001.
    [5] L. Davis, R. Chellapa, Y. Yaccob, and Q. Zheng, “Visual surveillance and monitoring of human and vehicular activity,” Proc. DARPA Image Understanding Workshop, New Orleans, LA, pp. 19-27, 1997.
    [6] R. Howarthand and H. Buxton, “Visual surveillance monitoring and watching,” Proc. Eur. Conf. Comput. Vis., Cambridge, U.K., pp. 321-334, Apr. 1996.
    [7] T. Kanade, R. Collins, A. Lipton, P. Burt, and L. Wixson, “Advances in cooperative multisensor video surveillance,” Proc. DARPA Image Understanding Workshop, Monterey, CA, pp. 3-24, Nov. 1998.
    [8] G. L. Foresti, “Object recognition and tracking for remote video surveillance,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 7, pp. 1045-1062, Oct. 1999.
    [9] G. L. Foresti, P. Mahonen, and C. Regazzoni, Multimedia Video-Based Surveillance Systems: From User Requirements to Research Solutions. Norwell, MA: Kluwer, Sep. 2000.
    [10] D. Koller, K. Daniilidis, and H. H. Nagel, “Model-based object tracking in monocular sequences of road traffic scenes,” Int. J. Comput. Vis., vol. 10, no. 3, pp. 257-281, Jun. 1993.
    [11] Z. Zhu, G. Xu, B. Yang, D. Shi, and X. Lin, “VISATRAM: A real-time vision system for automatic traffic monitoring,” Image Vis. Comput., vol. 18, no. 10, pp. 781-794, Jul. 2000.
    [12] S. Dockstader and M. Tekalp, “Multiple camera tracking of interacting and occluded human motion,” Proc. IEEE, vol. 89, no. 10, pp. 1441-1455, Oct. 2001.
    [13] S. Park and J. Aggarwal, “A hierarchical Bayesian network for event recognition of human actions and interactions,” Multimedia Syst., vol. 10, no. 2, pp. 164-179, Aug. 2004.
    [14] K. Rangarajan and M. Shah, “Establishing motion correspondence,” CVGIP: Image Understanding, vol. 54, no. 1, pp. 56-73, 1991.
    [15] I. K. Sethi and R. Jain, “Finding trajectories of feature points in a monocular image sequence,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 9, no. 1, pp. 56-73, Jan. 1987.
    [16] V. Salari and I. K. Sethi, “Feature point correspondence in the presence of occlusion,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 87-91, Jan. 1990.
    [17] R. Mehrotra, “Establishing motion-based feature point correspondence,” Pattern Recognition, vol. 31, no. 1, pp. 23-30, Jan. 1998.
    [18] Y. Wang, “Feature point correspondence between consecutive frames based on genetic algorithm,” International Journal of Robotics and Automation, vol. 21, no. 1, pp. 35-38, 2006.
    [19] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Ed., Prentice Hall, 2002.
    [20] M. Unser, A. Aldroubi, and M. Eden, “Enlargement or reduction of digital images with minimum loss of information,” IEEE Trans. on Image Processing, vol. 4, pp. 247-258, Mar. 1995.
    [21] W. K. Pratt, Digital Image Processing, Wiley, Toronto, Ont., Canada, 1978.
    [22] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. 29, no. 6, pp. 1153-1160, 1981.
    [23] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE press, Piscataway NJ, 1999.
    [24] S. M. Guo, L. S. Shieh, G. Chen, and N. P. Coleman, “Observer-type kalman innovation filter for uncertain linear systems,” IEEE Trans. on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1406-1418, Oct. 2001.
    [25] B. Li, and W. S. Jiang, “Optimizing complex functions by chaos search,” Cybernetics and Systems, vol. 29, no. 4, pp. 409-419, Jun. 1998.
    [26] X. F. Yan, D. Z. Chen, and S. X. Hu, “Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model,” Computers and Chemical Engineering, vol. 27, pp. 1393-1404, Oct. 2003.
    [27] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in Evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84-90, 1960.
    [28] J. M. Hammersley and D. C. Handscomb, Monte Carlo Method, Methuen and Company, 1964.
    [29] J. C. Van Der Corput, “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amsterdam 38 A13-A21, pp. 1058-1066, 1935.
    [30] J. C. Potts, T. D. Giddens ,and S. B. Yadav, “The development and evaluation of an improved genetic algorithm based on migration and artificial selection,” IEEE Trans. on System, Man, and Cybernetics, vol. 24, no.1, pp. 73-85, 1994.
    [31] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA, 59-88, 1989.

    下載圖示 校內:立即公開
    校外:2007-07-05公開
    QR CODE