簡易檢索 / 詳目顯示

研究生: 林鴻昇
Lin, Hung-Sheng
論文名稱: 銅催化環化導向之多環 GFP 類螢光分子: 剛化與螢光性質提升研究
Polycyclic GFP-Like Fluorophores via Copper-Catalyzed Cyclization: Rigidification and Fluorescence Enhancement
指導教授: 宋光生
Sung, Kuang-Sen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 156
中文關鍵詞: GFP 類似物銅催化氧化環化自由基轉化螢光調控
外文關鍵詞: GFP analogue, copper catalysis, oxidative cyclization, radical transformation, fluorescence tuning
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在透過銅催化環化反應提升 GFP 類螢光分子之分子剛性與螢光效率,並建立結構轉化與激發態性質之對應關係。以 o-DHPBDI 為設計起點,藉由共軛系統延伸與骨架剛化策略,合成新型發色團 PH-DHOBDI,進一步於有氧條件下進行 CuCl₂ 催化環化反應,以探討其反應路徑、產物選擇性與光物理行為。實驗結果顯示,PH DHOBDI 可於不同催化條件下分別導向生成 PH-DHOPIO、PH-DHOBDIT 與 PH-DHOBDITC 三種具代表性之產物。特別是在加入自由基捕捉劑 TEMPO 後,原先預期產物完全消失,反應轉而導向重排型產物 PH-DHOBDIT,且其於 CDCl₃ 中可進一步轉化,經後續結晶操作獲得 PH-DHOBDITC,顯示反應對自由基環境與溶劑條件高度敏感,並可能涉及多重轉化通道。為進一步解析分子剛性與螢光性質之關聯性,本研究整合紫外吸收、螢光放射與量子產率等光物理分析。結果顯示,PH-DHOBDIT 因環化後分子剛性提升,展現最高螢光量子產率(Φf = 0.374);而 PH-DHOBDITC 與 PH-DHOPIO 雖具有明顯藍位移之放射特性,其整體發光效率亦優於未環化之 PH-DHOBDI。上述結果驗證分子剛化確實有助於提升激發態能量之輻射利用率,支持本研究所提出之結構–性質調控策略。綜合以上觀察,本研究成功建立一套結構設計、反應調控與性質解析整合之操作模式,期能作為後續發色團優化與螢光材料開發之實驗參考依據。

    This study aims to enhance the molecular rigidity and fluorescence efficiency of GFP-like fluorophores through copper-catalyzed cyclization and to establish correlations between structural transformation and excited-state behavior. Using o-DHPBDI as a starting point, a new fluorophore, PH-DHOBDI, was synthesized via π-extension and backbone rigidification strategies. Under aerobic CuCl₂ conditions, PH-DHOBDI underwent divergent transformations into three representative products—PH-DHOPIO, PH DHOBDIT, and PH-DHOBDITC—depending on radical traps and solvent effects. TEMPO addition suppressed PH-DHOPIO formation and directed the reaction toward PH DHOBDIT, which further converted into PH-DHOBDITC upon solvent-induced rearrangement in CDCl₃, followed by crystallization. These outcomes highlight the system’s sensitivity to reaction conditions and the presence of multiple reactive pathways. To evaluate the impact of molecular structure on emission behavior, UV–vis absorption, fluorescence spectroscopy, quantum yield measurements, and single-crystal X-ray diffraction were employed. PH-DHOBDIT exhibited the highest fluorescence quantum yield (Φf = 0.374), attributed to its enhanced rigidity, while PH-DHOPIO and PH DHOBDITC showed blue-shifted emissions with moderate efficiency, both still outperforming the non-cyclized PH-DHOBDI. This work demonstrates an integrated strategy linking molecular design, reaction control, and spectroscopic analysis, providing a basis for the future development of tunable, rigidified fluorophores.

    中文摘要 i 英文摘要 ii 致謝 x 目錄 xi 表目錄 xviii 圖目錄 xix 化合物結構縮寫對照 xxii 第1章 緒論 1 1.1 綠色螢光蛋白與其發色團系統之簡介 1 1.2 GFP 衍生物與人工分子之設計與環化反應 6 1.3 銅催化有氧氧化反應之機構探討 8 1.4 自由基探測策略與 TEMPO 之角色 10 1.5 本研究之目的 13  第2章 研究結果與討論 14 2.1 PH-DHOBDI 之分子設計與結構修飾策略 14 2.2 PH-DHOBDI 之合成流程與可行性驗證 16 2.3 PH-DHOBDI 與 o-DHPBDI 之反應性與產率比較 18 2.4 銅催化反應產物之差異性與氧氣初探 20 2.5 TEMPO 導向產物之生成與結構轉化觀察 23 2.6 CuCl2/TEMPO催化系統中作用機制與功能定位 25 2.7 PH-DHOBDIT自發轉化之探討 30 2.8 各產物之光譜性質比較與結構推測 35 2.9 溶劑效應對激發態與放射行為之影響 39 2.9.1 PH-DHOBDI 之雙重放射行為與溶劑感應特性 40 2.9.2 環化產物之放射紅移行為與氫鍵效應 44 2.9.3 環化產物之激發光譜行為與溶劑效應 47 2.9.4 螢光效率受分子共軛與平面性雙重影響 50 2.9.5 本節之綜合觀察與結論 52 2.10 研究結論與未來展望 53  第3章 實驗方法 56 3.1 綠色螢光蛋白衍生物的合成 56 3.1.1 NBPO之合成方法 56 3.1.2 MNBA之合成方法 57 3.1.3 NBMI之合成方法 58 3.1.4 ABMI之合成方法 59 3.1.5 PH-DHOBDI之合成方法 60 3.1.6 PH-DHOPIO之合成方法 61 3.1.7 PH-DHOBDIT之合成方法 62 3.1.8 PH-DHOBDITC之合成方法 63 3.2 核磁共振光譜(NMR)之測定方法 64 3.3 紫外-可見光光譜(UV-Vis)之測定方法 65 3.4 螢光光譜(FL)之測定方法 66 3.5 質譜(MS)之測定方法 67 3.6 單晶繞射分析(XRD)之測定方法 68 參考資料 69  附錄 70 附錄導言 70 附錄A. 化合物縮寫與結構對照資料 70 A.1 化合物縮寫與命名原則說明 70 A.2 化合物縮寫與IUPAC命名 71 A.3 化合物結構與縮寫之對照表 72 附錄B. 核磁共振光譜(NMR) 73 B.1 ¹H NMR spectrum of NBPO in CDCl₃ (400 MHz) 73 B.2 ¹H NMR spectrum of MNBA in CDCl₃ (400 MHz) 74 B.3 ¹H NMR spectrum of NBMI in CDCl₃ (400 MHz) 75 B.4 ¹H NMR spectrum of ABMI in CDCl₃ (400 MHz) 76 B.5 ¹H NMR spectrum of PH-DHOBDI in CDCl₃ (400 MHz) 77 B.6 ¹3C NMR spectrum of PH- DHOBDI in CDCl3 (500 MHz) 78 B.7 ¹H NMR spectrum of PH- DHOPIO in CDCl₃ (400 MHz) 79 B.8 ¹3C NMR spectrum of PH- DHOPIO in CDCl3 (500 MHz) 80 B.9 ¹H NMR spectrum of PH- DHOBDIT in CD₃CN (400 MHz) 81 B.10 ¹3C NMR spectrum of PH- DHOBDIT in CDCl3 (500 MHz) 82 B.11 Overlay of ¹³C NMR and DEPT spectra of PH-DHOBDIT(500 MHz) 83 B.12 ¹H NMR spectrum of PH- DHOBDITC in CDCl₃ (500 MHz) 84 B.13 ¹3C NMR spectrum of PH- DHOBDITC in CDCl3 (500 MHz) 85 B.14 Overlay of ¹³C NMR and DEPT spectra of PH-DHOBDITC(500 MHz) 86  附錄C. 紫外-可見光與螢光光譜(UV-vis & FL) 87 C.1 UV–Vis absorption spectra of PH-DHOBDI in different solvents 87 C.2 FL emission spectra of PH-DHOBDI (λₑₓ = 350 nm) in different solvents 87 C.3 FL emission spectra of PH-DHOBDI (λₑₓ = 470 nm) in different solvents 88 C.4 Photophysical parameters of PH-DHOBDI in different solvents 88 C.5 UV–Vis absorption spectra of PH-DHOBDIT in different solvents 89 C.6 FL emission spectra of PH-DHOBDIT (λₑₓ =350 nm) in different solvents 89 C.7 Excitation spectra of PH-DHOBDIT in different solvents 90 C.8 Photophysical parameters of PH-DHOBDIT in different solvents 90 C.9 UV–Vis absorption spectra of PH-DHOBDITC in different solvents 91 C.10 FL emission spectra of PH-DHOBDITC (λₑₓ =300 nm) in different solvents 91 C.11 Excitation spectra of PH-DHOBDITC in different solvents 92 C.12 Photophysical parameters of PH-DHOBDITC in different solvents 92 C.13 UV–Vis absorption spectra of PH-DHOPIO in different solvents 93 C.14 FL emission spectra of PH-DHOPIO (λₑₓ =350 nm) in different solvents 93 C.15 Excitation spectra of PH-DHOPIO in different solvents 94 C.16 Photophysical parameters of PH-DHOPIO in different solvents 94 C.17 Overlay of UV–Vis absorption spectra of PH-DHOBDI and its derivatives 95 C.18 Overlay of FL emission spectra of PH-DHOBDI and its derivatives 96 C.19 Photophysical parameters of PH-DHOBDI and its derivatives 97  附錄D. 電噴灑游離質譜(ESI-MS) 98 D.1 High-resolution ESI-MS spectrum of PH-DHOBDI (m/z 100–1500) 98 D.2 High-resolution ESI-MS spectrum of PH-DHOBDI (m/z 320–380) 99 D.3 High-resolution ESI-MS spectrum of PH-DHOBDIT (m/z 250–450) 100 D.4 High-resolution ESI-MS spectrum of PH-DHOBDIT (m/z 330–360) 101 D.5 High-resolution ESI-MS spectrum of PH-DHOBDITC ( m/z 340–400) 102 D.6 High-resolution ESI-MS spectrum of PH-DHOBDITC ( m/z 360–370) 103 D.7 High-resolution ESI-MS spectrum of PH-DHOPIO (m/z 100–1500) 104 D.8 High-resolution ESI-MS spectrum of PH-DHOPIO (m/z 320–370) 105 D.9 Comparison of theoretical and experimental [M+H]+ (HR-ESI-MS) 106  附錄E. X-ray 單晶繞射(XRD)資料 107 E.1 ORTEP diagram of PH-DHOBDIT 107 E.2 Crystal packing diagram of PH-DHOBDIT viewed along the b-axis 108 E.3 Hydrogen-bonding interactions in the crystal structure of PH-DHOBDIT 109 E.4 Crystal data and structure refinement for PH-DHOBDIT 110 E.5 Atomic coordinates and displacement parameters for PH-DHOBDIT 111 E.6 Bond lengths and angles for PH-DHOBDIT 112 E.7 Anisotropic displacement parameters for PH-DHOBDIT 115 E.8 Hydrogen coordinates and displacement parameters for PH-DHOBDIT 116 E.9 CheckCIF validation report for PH-DHOBDIT 117 E.10 ORTEP diagram of PH-DHOBDIT 120 E.11 Crystal packing diagram of PH-DHOBDITC viewed along the a-axis 121 E.12 Hydrogen-bonding interactions in the crystal structure of PH-DHOBDITC 122 E.13 Crystal data and structure refinement for PH-DHOBDITC 123 E.14 Atomic coordinates and displacement parameters for PH DHOBDITC 124 E.15 Bond lengths and angles for PH-DHOBDITC 125 E.16 Anisotropic displacement parameters for PH-DHOBDITC 128 E.17 Hydrogen coordinates and displacement parameters for PH-DHOBDITC 129 E.18 CheckCIF validation report for PH-DHOBDITC 130

    (1) Li, M.-J.; Lin, Y.-H.; Sung, R.; Sung, K. E–Z Isomerization Mechanism of the Green Fluorescent Protein Chromophore: Remote Regulation by Proton Dissociation of the Phenol Group. The Journal of Physical Chemistry A 2021, 125 (17), 3614-3621.
    (2) Tsien, R. Y. The green fluorescent protein. Annual review of biochemistry 1998, 67 (1), 509-544.
    (3) Meech, S. R. Excited state reactions in fluorescent proteins. Chemical Society Reviews 2009, 38 (10), 2922-2934.
    (4) Bank, R. P. D. Crystal Structure of Green Fluorescent Protein (GFP). RCSB PDB, 2025. https://www.rcsb.org/structure/1EMA (accessed May 14, 2025).
    (5) Walker, C. L. L., Konstantin A.; Yampolsky, Ilia V.; Mishin, Alexander S.; Bommarius, Andreas S.; Duraj-Thatte, Anna M.; Azizi, Bahareh; Tolbert, Laren M.; Solntsev, Kyril M. Fluorescence imaging using synthetic GFP chromophores. Current Opinion in Chemical Biology 2015, 27, 64–74. DOI: 10.1016/j.cbpa.2015.06.002.
    (6) Chen, Y. H.; Lo, W. J.; Sung, K. Synthesis, photophysical properties, and application of o - And p -amino green fluorescence protein synthetic chromophores. Journal of Organic Chemistry 2013, 78 (2), 301-310, Article. DOI: 10.1021/jo302050y Scopus.
    (7) 黃世昱. 具有鄰位氨基丙烷-2,3-二醇側鏈的綠色螢光蛋白發光團:合成、性質及應用. 國立成功大學, 2021.
    (8) McCann, S. D.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Accounts of Chemical Research 2015, 48 (6), 1756-1766. DOI: 10.1021/acs.accounts.5b00060.
    (9) Li, L.; Hao, C.; Zhai, R.; He, W.; Deng, C. Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction. Fuel 2023, 331, 125853. DOI: https://doi.org/10.1016/j.fuel.2022.125853.
    (10) Teipel, J. G., V.; Hölzle, E.; Kaltenbach, K.; Lachenmeier, D.W.; Kuballa, T. . An Easy and Reliable Method for the Mitigation of Deuterated Chloroform Decomposition to Stabilise Susceptible NMR Samples. . Chemistry 2022, 4, 776-785.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE