| 研究生: |
林鴻昇 Lin, Hung-Sheng |
|---|---|
| 論文名稱: |
銅催化環化導向之多環 GFP 類螢光分子: 剛化與螢光性質提升研究 Polycyclic GFP-Like Fluorophores via Copper-Catalyzed Cyclization: Rigidification and Fluorescence Enhancement |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | GFP 類似物 、銅催化 、氧化環化 、自由基轉化 、螢光調控 |
| 外文關鍵詞: | GFP analogue, copper catalysis, oxidative cyclization, radical transformation, fluorescence tuning |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在透過銅催化環化反應提升 GFP 類螢光分子之分子剛性與螢光效率,並建立結構轉化與激發態性質之對應關係。以 o-DHPBDI 為設計起點,藉由共軛系統延伸與骨架剛化策略,合成新型發色團 PH-DHOBDI,進一步於有氧條件下進行 CuCl₂ 催化環化反應,以探討其反應路徑、產物選擇性與光物理行為。實驗結果顯示,PH DHOBDI 可於不同催化條件下分別導向生成 PH-DHOPIO、PH-DHOBDIT 與 PH-DHOBDITC 三種具代表性之產物。特別是在加入自由基捕捉劑 TEMPO 後,原先預期產物完全消失,反應轉而導向重排型產物 PH-DHOBDIT,且其於 CDCl₃ 中可進一步轉化,經後續結晶操作獲得 PH-DHOBDITC,顯示反應對自由基環境與溶劑條件高度敏感,並可能涉及多重轉化通道。為進一步解析分子剛性與螢光性質之關聯性,本研究整合紫外吸收、螢光放射與量子產率等光物理分析。結果顯示,PH-DHOBDIT 因環化後分子剛性提升,展現最高螢光量子產率(Φf = 0.374);而 PH-DHOBDITC 與 PH-DHOPIO 雖具有明顯藍位移之放射特性,其整體發光效率亦優於未環化之 PH-DHOBDI。上述結果驗證分子剛化確實有助於提升激發態能量之輻射利用率,支持本研究所提出之結構–性質調控策略。綜合以上觀察,本研究成功建立一套結構設計、反應調控與性質解析整合之操作模式,期能作為後續發色團優化與螢光材料開發之實驗參考依據。
This study aims to enhance the molecular rigidity and fluorescence efficiency of GFP-like fluorophores through copper-catalyzed cyclization and to establish correlations between structural transformation and excited-state behavior. Using o-DHPBDI as a starting point, a new fluorophore, PH-DHOBDI, was synthesized via π-extension and backbone rigidification strategies. Under aerobic CuCl₂ conditions, PH-DHOBDI underwent divergent transformations into three representative products—PH-DHOPIO, PH DHOBDIT, and PH-DHOBDITC—depending on radical traps and solvent effects. TEMPO addition suppressed PH-DHOPIO formation and directed the reaction toward PH DHOBDIT, which further converted into PH-DHOBDITC upon solvent-induced rearrangement in CDCl₃, followed by crystallization. These outcomes highlight the system’s sensitivity to reaction conditions and the presence of multiple reactive pathways. To evaluate the impact of molecular structure on emission behavior, UV–vis absorption, fluorescence spectroscopy, quantum yield measurements, and single-crystal X-ray diffraction were employed. PH-DHOBDIT exhibited the highest fluorescence quantum yield (Φf = 0.374), attributed to its enhanced rigidity, while PH-DHOPIO and PH DHOBDITC showed blue-shifted emissions with moderate efficiency, both still outperforming the non-cyclized PH-DHOBDI. This work demonstrates an integrated strategy linking molecular design, reaction control, and spectroscopic analysis, providing a basis for the future development of tunable, rigidified fluorophores.
(1) Li, M.-J.; Lin, Y.-H.; Sung, R.; Sung, K. E–Z Isomerization Mechanism of the Green Fluorescent Protein Chromophore: Remote Regulation by Proton Dissociation of the Phenol Group. The Journal of Physical Chemistry A 2021, 125 (17), 3614-3621.
(2) Tsien, R. Y. The green fluorescent protein. Annual review of biochemistry 1998, 67 (1), 509-544.
(3) Meech, S. R. Excited state reactions in fluorescent proteins. Chemical Society Reviews 2009, 38 (10), 2922-2934.
(4) Bank, R. P. D. Crystal Structure of Green Fluorescent Protein (GFP). RCSB PDB, 2025. https://www.rcsb.org/structure/1EMA (accessed May 14, 2025).
(5) Walker, C. L. L., Konstantin A.; Yampolsky, Ilia V.; Mishin, Alexander S.; Bommarius, Andreas S.; Duraj-Thatte, Anna M.; Azizi, Bahareh; Tolbert, Laren M.; Solntsev, Kyril M. Fluorescence imaging using synthetic GFP chromophores. Current Opinion in Chemical Biology 2015, 27, 64–74. DOI: 10.1016/j.cbpa.2015.06.002.
(6) Chen, Y. H.; Lo, W. J.; Sung, K. Synthesis, photophysical properties, and application of o - And p -amino green fluorescence protein synthetic chromophores. Journal of Organic Chemistry 2013, 78 (2), 301-310, Article. DOI: 10.1021/jo302050y Scopus.
(7) 黃世昱. 具有鄰位氨基丙烷-2,3-二醇側鏈的綠色螢光蛋白發光團:合成、性質及應用. 國立成功大學, 2021.
(8) McCann, S. D.; Stahl, S. S. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Accounts of Chemical Research 2015, 48 (6), 1756-1766. DOI: 10.1021/acs.accounts.5b00060.
(9) Li, L.; Hao, C.; Zhai, R.; He, W.; Deng, C. Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction. Fuel 2023, 331, 125853. DOI: https://doi.org/10.1016/j.fuel.2022.125853.
(10) Teipel, J. G., V.; Hölzle, E.; Kaltenbach, K.; Lachenmeier, D.W.; Kuballa, T. . An Easy and Reliable Method for the Mitigation of Deuterated Chloroform Decomposition to Stabilise Susceptible NMR Samples. . Chemistry 2022, 4, 776-785.