簡易檢索 / 詳目顯示

研究生: 劉杰旻
Liu, Chieh-min
論文名稱: 利用固相合成法合成La1-xPrxTiNbO6及其光性質之研究
Solid-State Synthesis and Luminescence Properties of La1-xPrxTiNbO6
指導教授: 齊孝定
Qi, Xiaoding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 易解石螢光粉
外文關鍵詞: phosphor, aschynite
相關次數: 點閱:64下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為利用固相合成法合成一種新穎螢光材料:La1-xPrxTiNbO6 (Pr=0~100%),藉由改變Pr3+摻雜的濃度,探討其於383nm近紫外光和420~450nm藍光激發光源下,對合成螢光粉體之晶體結構及發光特性之影響。
    實驗結果顯示,樣品以1300℃燒結72小時,LaTiNbO6之結構為單斜晶系(Monoclinic),La1-xPrxTiNbO6 (x≥20%)之結構為正交晶系(Orthorhombic),La1-xPrxTiNbO6 (0<x<20%)為單斜晶系與正交晶系混合相。但將樣品以1080℃退火12小時,La1-xPrxTiNbO6 (0≤x≤100%)皆變為正交晶系結構。
    La1-xPrxTiNbO6可在單一激發光源下,同時發出491 nm (3P03H4)的藍光與611 nm (3P03H6,1D23H4)的橘光,而此兩發光對照CIE色度座標圖可以發現,恰好可以混色而成白光。且La1-xPrxTiNbO6可利用Pr3+摻雜濃度的不同,而改變其491 nm與611 nm發光的比例,進而混色出不同CIE色度座標圖上位置的發光,實為一種極具潛力的白光LED螢光粉,其發展前景相當看好。

    In this study, novel phosphors based on LaTiNbO6 system have been synthesized by solid-state method. Effects of contents of Pr3+ on crystal structure and photoluminescence properties by 383 nm and 420~450 nm pumping source of synthesized phosphors were also discussed.
    The results revealed that the structure of LaTiNbO6 is monoclinic under the calcining temperature of 1300℃ for 72 hours while the structures of La1-xPrxTiNbO6 (x≧20%) are orthorhombic and the structures of La1-xPrxTiNbO6 (0<x<20%) are a mixture of monoclinic and orthorhombic. However, after being annealed at 1080℃ for 12 hours, all structures of La1-xPrxTiNbO6 (0≦x≦100%) change into orthorhombic.
    Under single excitation, the emission spectrum of La1-xPrxTiNbO6 not only has the most intese blue peaks at 491 nm due to the transition 3P03H4, but also has other powerful orange peaks at 611 due to the transition 3P03H6, 1D23H4. After compared with the C.I.E. chromaticity diagram, the two peaks can form white light. Moreover, we can change the coordinates on the C.I.E. chromaticity diagram by changing the concentration of Pr3+. With regard to the results of the excellent fluorescence iages, it can be concluded that the La1-xPrxTiNbO6 could be a promising phosphor for use in LED devices.

    總目錄 摘要 II ABSTRACT III 誌謝 IV 總目錄 V 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1前言 1 1.2 螢光材料發展現況與未來方向 3 1.3 研究動機與目的 4 第二章 理論基礎與文獻回顧 6 2.1 螢光材料簡介 6 2.2 螢光材料分類 7 2.2.1 以螢光材料之特性分類 7 2.2.2 以螢光材料之發光分類 9 2.2.3 以螢光材料之組成分類[10] 12 2.3 螢光材料發光原理與過程[11] 12 2.3.1 組態座標(Configuration Coordination) 12 2.3.2 電子-聲子交互作用(Electron-Phonon Interaction) 14 2.3.3 LaPorte選擇律(Laporte’s Rule) 14 2.3.4 自旋選擇律(Spin Selection Rule) 15 2.3.5 法蘭克-康頓原理(Franck-Condon Principle)與史托克位移(Stokes Shift) 15 2.3.6 溫度對波形之影響 16 2.3.7 溫度淬滅(Temperature Quenching) 19 2.3.8 增感劑與活化中心之能量傳遞 20 2.4 螢光材料激發源種類與應用[7, 15-18] 20 2.5 螢光材料組成與設計 22 2.5.1 主體材料 23 2.5.2 活化劑 25 2.6 螢光材料性質 26 2.6.1 發光定義 27 2.6.2 發光效率 28 2.6.3 離子化合物之非極性(共價性)特徵[7, 11, 14, 18, 20] 28 2.6.4 電子雲擴張效應(Nephelauxetic;Cloud Expanding)[11] 30 2.6.5 晶格場理論(Crystal Field Theory)[11, 20-21] 32 2.7 螢光材料合成方法 34 2.7.1 固相法(Solid-State Method)[22] 34 2.7.2 溶膠凝膠法(Sol-Gel Method)[23-29] 35 2.7.3 共沉法(Coprecipitation Method)[22, 30-32] 36 2.7.4 水熱法( Hydrothermal Method )[22, 32-34] 37 2.7.5 燃燒法(Combustion Method)[22, 34] 37 2.7.6 噴霧熱分解法(Spray-Pyrolysis Method)[22] 38 2.7.7 檸檬酸法(Citric Acid Method)[35-39] 38 2.7.8 微波輔助合成法(Microwave Assisted Method)[22] 40 2.8 螢光材料發光特性量測 40 2.8.1 亮度量測 40 2.8.2 發光光譜量測 40 2.9 色彩簡介[11] 41 2.9.1 視覺敏感度 41 2.9.2 CIE色度座標圖(CIE Chromaticity Diagram) 42 2.9.3 色溫(Color Temperature) 46 2.9.4 演色性與照明效率 46 第三章 實驗方法及步驟 51 3.1實驗用起始原料 51 3.2 實驗流程 51 3.3 儀器設備 53 3.3.1 實驗儀器設備 53 3.3.2 分析儀器設備 53 第四章 結果與討論 55 4.1 結構分析 55 4.2 吸收光譜 62 4.3 激發與發光光譜 65 4.4 CIE色度座標分析 79 第五章 結論 82 參考文獻 83   表目錄 表 1.1 各種顯示器的發光原理[1] 2 表2.1螢光材料的應用範圍[8] 8 表2.2非光學活性之陰離子團的種類與價數[19] 24 表2.3具光學活性之陰離子團的種類與價數[19] 24 表2.4可作為主體材料中陽離子的種類與價數[19] 25 表2.5可作為活化劑之陽離子的種類與價數[19] 25 表2.6可作為抑制劑之陽離子團的種類與價數[19] 27 表2.7黑體溫度與發出光色變化[11] 47 表2.8演色指數與演色性評價[11] 48 表3.1 固相合成法實驗流程 52   圖目錄 圖2.1螢光材料能量吸收與轉換之機制[6] 6 圖2.2組態座標模型與躍遷過程示意圖[12] 13 圖2.3電子躍遷過程之呼吸模型[13] 17 圖2.4電子於不同振動能階之出現機率及其波函數分佈[12] 18 圖2.5溫度對吸收及發射光譜之影響[12] 18 圖2.6濃度淬滅示意圖[14] 19 圖2.7極化效應示意圖[14] 30 圖2.8過渡金屬離子之極化現象[14] 31 圖2.9金屬d軌域及周圍配位基之相關位置圖,實心圓點為配位基構成正四面體對稱;空心圓點則為構成正八面體之對稱[8] 33 圖2.10電子雲膨脹與晶格場效應對4f-5d躍遷之影響[11] 33 圖2.11檸檬酸結構式[36] 39 圖2.12標準觀測者彩色匹配函數[11] 43 圖2.13 CIE色度座標圖及各色彩名稱,外圍弧形曲線為光譜軌跡,數字代表光譜之波長,下方連結紅、藍色之直線為純紫軌跡。圖中點D:晝光色日光燈,點W:白色日光燈點,點L:一般照明用燈泡,點H:高壓水銀燈,點HF:白色高壓水銀燈,點M:金屬鹵素燈,點NH:高壓鈉燈,點A與C:標準照明光源之色度座標。[40] 45 圖2.14照明效率及演色性與波長之關係圖[42] 49 圖4.1 LaTiNbO6之XRD圖(1300℃煆燒72 hr) 57 圖4.2 PrTiNbO6之XRD圖(1300℃煆燒72 hr) 57 圖4.3 La1-xPrxTiNbO6之結構隨摻雜濃度之變化圖(1300℃煆燒72 hr) 58 圖4.4 LaTiNbO6+10%Nb之XRD圖(1300℃煆燒24 hr) 59 圖4.5 LaTiNbO6之XRD圖(1000℃及1080℃煆燒24 hr) 61 圖4.6 LaTiNbO6之XRD圖(1300℃煆燒72 hr,1080℃退火12 hr) 61 圖4.7 正交晶系結構La1-xPrxTiNbO6之XRD圖 62 圖4.8 正交晶系結構La1-xPrxTiNbO6之SEM圖 63 圖4.9 La1-xPrxTiNbO6之吸收光譜隨摻雜濃度之變化圖 64 圖4.10 極低Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(447 nm激發) 67 圖4.11 低Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(447 nm激發) 67 圖4.12 中Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(447 nm激發) 69 圖4.13 高Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(447 nm激發) 69 圖4.14 極低Pr3+摻雜濃度La1-xPrxTiNbO6之491 nm激發光譜 70 圖4.15 低Pr3+摻雜濃度La1-xPrxTiNbO6之491 nm激發光譜 70 圖4.16 中Pr3+摻雜濃度La1-xPrxTiNbO6之491 nm激發光譜 71 圖4.17 高Pr3+摻雜濃度La1-xPrxTiNbO6之491 nm激發光譜 71 圖4.18 極低Pr3+摻雜濃度La1-xPrxTiNbO6之611 nm激發光譜 73 圖4.19 低Pr3+摻雜濃度La1-xPrxTiNbO6之611 nm激發光譜 73 圖4.20 中Pr3+摻雜濃度La1-xPrxTiNbO6之611 nm激發光譜 74 圖4.21 高Pr3+摻雜濃度La1-xPrxTiNbO6之611 nm激發光譜 74 圖4.22 極低Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(489 nm激發) 75 圖4.23 低Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(489 nm激發) 75 圖4.24 中Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(489 nm激發) 76 圖4.25 高Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(489 nm激發) 76 圖4.26 極低Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(383 nm激發) 77 圖4.27 低Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(383 nm激發) 77 圖4.28 中Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(383 nm激發) 78 圖4.29 高Pr3+摻雜濃度La1-xPrxTiNbO6之發光光譜(383 nm激發) 78 圖4.30 La1-xPrxTiNbO6之發光光譜(447 nm激發) 80 圖4.31 CIE色度座標圖(a=0.8%,b=1.5%,c=2%,d=3%,e=4%,f=5%) 81

    [1] 張德安,電漿顯示器介紹,行政院國科會光電小組編,台灣,2004。
    [2] 劉如熹、劉宇恒,發光二極體用氧氮螢光粉介紹,全華科技圖書股份有限公司,台灣,2006。
    [3] 楊素華,螢光粉在發光上的應用,科學發展358期,台灣,2002。
    [4] 林志勳,白光LED新興市場機會與材料發展趨勢,經濟部技術處委託,工業技術研究院產業經濟與資訊服務中心執行,台灣,2005。
    [5] Xiaoding Qi, Growth and Optical Characterisation of Novel Crystals for Applications in Lasers and Non-Linear Optics, Department of Physics and Applied Physics, University of Strathclyde, United Kingdom, 1996.
    [6] 蘇勉曾、吳世康,螢光材料,發光材料第四卷,中國,1996。
    [7] G. Blasse and B.C. Grabmaier, Luminescent Materials, Springer-Verlag Telos, Germany, 1994.
    [8] Shigeo Shionoya, Phosphor Handbook, CRC Press LLC, America, 1999.
    [9] Simon Cotton, Lanthanides and Actinides, Macmillan, United Kingdom, 1990.
    [10] J. E. Yang, The Application and Investigation of Luminescence Materials in Electronic Industry, Technical Report of ITRI, Taiwan, 1992.
    [11] 劉如熹、紀喨勝,紫外光發光二極體用螢光粉介紹,全華科技圖書股份有限公司,台灣,2003。
    [12] 方容川,固體光譜學,中國科技大學出版社,中國,2001。
    [13] Hajime Yamamoto, Phosphor Global Summit, Scottsdale, America, 2003.
    [14] Bodie E. Douglas, Darl H. McDaniel and John J. Alexander, Concepts and Models of Inorganic Chemistry, Wiley, America, 1994.
    [15] Kenneth S. Suslick, Sonochemistry, Science, Volune 247, Issue 4949, Pages 1439-1445, 1990.
    [16] 祝大昌、陳劍鋐、朱世盛,分子發光分析法(螢光法和磷光法),復旦大學出版社,中國,1985。
    [17] Lyuji, Ozawa, Cathodoluminescence, Kodansha Ltd., Japan, 1990.
    [18] P. Goldberg, Luminescence of Inorganic Solids, Acadamic Press Inc., America, 1996.
    [19] R. C. Ropp, Luminescence and the Solid State, Elsevier Science Publisher, The Netherlands, 1991.
    [20] A. H. Kitai, Solid State Luminescence, Chapman & Hall, America, 1993.
    [21] P. W. Atkins, Physical Chemistry-six ed, Oxford University Press, Japan, 1998.
    [22] 王列松,噴霧熱解法製備Eu3+摻雜的球形發光粉,中國科學院長春應用化學研究所碩士論文,中國,2004。
    [23] 要之勤,MgSiO3:Eu3+螢光粉體之製備及其光性質之研究,國立成功大學材料科學及工程學系碩士論文,台灣,2005。
    [24] B. Jirhennsons and M. E. Straumanis, Colloid Chemistry, McMillan Co., America, 1962.
    [25] 陳慧英,溶膠凝膠法在薄膜製備上之應用,化工技術,台灣,1999。
    [26], Mackenzie John D. and Ulrich Donald R., Ultrastructure Processing of Advanced Ceramics, John Wiley and Sons, Inc., America, 1988.
    [27] C. J. Binker and G. W. Scherer, SolGelGlass: I. Gelation and Gel Structure, Journal of Non-Crystalline Solids, Volume 70, Issue 3, Pages 301-322, 1985.
    [28] D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Alkoxide, Academic Press, United Kingdom, 1978.
    [29 J. Zarzycki, M. Prassas and J. Phalipou, Synthesis of Glasses from Gels: the Problem of Monolithic Gels, Journal of Materials Science, Volume 17, Issue 11, Pages 3371-3379, 1982.
    [30] Yuexiao Pan, Mingmei Wu and Qiang Su, Comparative Investigation on Synthesis and Photoluminescence of YAG: Ce Phosphor, Materials Science and Engineering B, Volume 106, Issue 3, Pages 251-256, 2004.
    [31] Huasheng Lai, Baojiu Chen, Wu Xu, Xiaojun Wang, Yanmin Yang and Qingyu Meng, Photoluminescence Characteristics of (Y, Gd) P0.5V0.5O4: Tm3+ Phosphor Particles Prepared by Coprecipitation Reaction, Journal of Alloys and Compounds, Volume 395, Issues 1-2, Pages 181-184, 2005.
    [32] Yuexiao Pan, Herman H.-Y. Sung, Hao Wu, Jing Wang, Xianfeng Yang, Mingmei Wu and Qiang Su, Hydrothermally-Mediated Preparation and Photoluminescent Properties of Sr3Al2O6: Eu3+ Phosphor, Materials Research Bulletin, Volume 41, Issue 2, Pages 225-231, 2006.
    [33] Zhihua Li, Jinghui Zeng, Chen Chen and Yadong Li, Hydrothermal Synthesis and Luminescent Properties of YBO3: Tb3+ Uniform Ultrafine Phosphor, Journal of Crystal Growth, Volume 286, Issue 2, Pages 487–493, 2006.
    [34] Zeming Qi, Chaoshu Shi, Weiwei Zhang, Weiping Zhang and Tiandou Hu, Local Structure and Luminescence of Nanocrystalline Y2O3: Eu, Applied Physics Letters, Volume 81, Issue 15, Page 2857, 2002.
    [35] Yebin Xu, Wenyong Peng, Shijie Wang, Xiong Xiang and Peixiang Lu, Synthesis of SrAl12O19 Via Citric Acid Precursor, Materials Science and Engineering B, Volume 123, Issue 2, Pages 139-142, 2005.
    [36] 郭晏瑱,La1-xSrxMnO3粉末之鑑定及催化CO+NO反應之研究,國立成功大學材料科學及工程學系碩士論文,台灣,2002。
    [37] Pechini M. P., U. S. Pat., No.3, 231, 328, 1966.
    [38] Jenq-dar Tsay and Tsang-tse Fang, Effects of Molar Ratio of Citric Acid to Cations and of pH Value on the Formation and Thermal-Decomposition Behavior of Barium Titanium Citrate, Journal of the Amrican Ceramic Society, Volume 82, Issue 6, Pages 1409-1415, 2004.
    [39] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, Warm-White-Light Emitting Diode Utilizing a Single-Phase Full-Color Ba3MgSi2O8: Eu2+, Mn2+ Phosphor, Applied Physics Letters, Volume 84, Issue 15, Pages 2931-2933, 2004.
    [40] 許招庸,現代照明實務,全華科技圖書,台灣,1998。
    [41] W. A. Thornton, Luminosity and Color-Rendering Capability of White Light, Journal of the Optical Society of America, Volume 61, Issue 9, Pages 1155-1163, 1971.
    [42] Thomas Jstel, Hans Nikol and Cees Ronda, New Developments in the Field of Luminescent Materials for Lighting and Displays, Angewandte Chemmie International Edition, Volume 37, Issue 22, Pages 3084-3103, 1998.

    下載圖示 校內:2010-07-10公開
    校外:2010-07-10公開
    QR CODE