簡易檢索 / 詳目顯示

研究生: 賴愷緯
Lai, Kai-Wei
論文名稱: 溶膠凝膠法製作二氧化鈰/摻氟氧化錫電晶體式酸鹼度感測器之研究
Transistor-type pH Sensors Based on Ceria/FTO Films Prepared by Sol-gel Method
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 214
中文關鍵詞: 溶膠凝膠靜電紡絲二氧化鈰二氧化鈦延伸式閘極場效電晶體酸鹼度感測器超能斯特
外文關鍵詞: CeO2, TiO2, Sol-gel method, Electrospinning method, pH Sensors
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別以CeO2/FTO與CeO2/TiO2/FTO感測膜製作EGFET酸鹼度感測器,探討製備變因對感測膜之結構性質以及在pH 2~pH 12感測特性的影響。以下分為兩大主軸:(一) 以溶膠凝膠法來製備CeO2薄膜,並以旋轉塗佈法將溶膠塗佈於FTO,來製作CeO2/FTO酸鹼度感測器。改變製備變因為:前驅鹽濃度、固含量、旋轉速率、塗佈次數、煅燒溫度、溶膠反應時間、溶劑種類及鈰前驅鹽之影響。(二) 以溶膠凝膠法製備CeO2薄膜與電紡法製備TiO2粒子來製作CeO2/TiO2/FTO複合材料之酸鹼度感測器。改變製備變因為:旋轉塗佈速率、電紡收集時間與工作電壓。
    綜合以上變因之結果,影響感測值因素可歸納為兩點:表面活性基座數(NS)與片電阻值(R)。藉由減小粒子尺寸、增大比表面積,以增加活性座數目供氫離子吸附;控制薄膜厚度來減少片電阻值與增加粒子結晶度有利電訊傳遞,皆可使感測值上升。
    本實驗中最佳CeO2/FTO感測元件製備條件為:前驅鹽濃度21.12mM,固含量1 wt%,旋轉速率1000 rpm,塗佈次數1次,煅燒溫度500 oC,溶膠凝膠反應時間12 h,溶劑為丙醇-水混合系統,前驅鹽為Ce(NO3)3·6H2O。最佳感測值為87.19 mV/pH,線性度為0.9975。CeO2/TiO2/FTO最佳元件製備條件為:CeO2薄膜製作方式與上述相同,但旋轉速率為2000 rpm;TiO2薄膜為電紡收集時間1 min,工作電壓為15 kV。最佳元件感測值為75.69 mV/pH,線性度為0.9988。
    吾人亦針對最佳元件進行遲滯、時漂等穩定性探討,結果顯示兩種元件穩定性高且對氫離子具有極佳之選擇性。值得一提的是其元件生產成本低具有可拋性、體積小等優勢,因此未來在pH值應用相關方面具有其開發價值及發展潛力。

    In this study, CeO2/FTO and CeO2/TiO2/FTO pH sensors based on extended gate field-effect transistors (EGFET) were fabricated. The influences of variables on properties of sensing films were investigated and the sensing characteristics of devices to pH were also explored in pH range from 2 to 12. At first, a novel ceria based transistor type pH sensor was fabricated by the facile sol-gel method. Starting from the cerium precursor reacting with alcohol/water, the resultant CeO2 nanoparticles was uniformly deposited on the FTO substrate by means of spin-coating technique. Among the studied CeO2/FTO devices, the best device shows an extremely high pH sensitivity of 87.19 with a good linearity of 0.9975 in the pH range of 2~12. Secondly, TiO2 films were deposited on FTO substrate by electrospinning, then CeO2 nanoparticles deposited on TiO2/FTO by sol-gel method to fabricate CeO2/TiO2/FTO sensing devices. Among the studied CeO2/TiO2/FTO devices, the best device shows an extremely high pH sensitivity of 75.69 with a good linearity of 0.9988 in the pH range of 2~12. In summary, both CeO2/FTO devices and CeO2/TiO2/FTO devices revealed good sensing performance and exhibited a good long time stability. With advantage of easy fabrication and low cost, they have great potential in pH sensing development for various application.

    摘要 I Extended Abstract II 誌謝 X 總目錄 XI 表目錄 XVI 圖目錄 XVIII 符號說明 XXVII 第一章 緒論 1 1.1 前言 1 1.2 pH感測器之簡介 1 1.3 二氧化鈰結構與性質 3 1.4 二氧化鈦結構與性質 3 1.5 薄膜製備 4 1.6 文獻回顧 4 1.7研究動機及概要 5 第二章 原理 13 2.1 溶膠凝膠法 13 2.2 溶膠凝膠法程序 14 2.3 溶膠凝膠法的優缺點 15 2.4 影響溶膠凝膠法因素 16 2.5 旋轉塗佈法 16 2.6 場效電晶體理論 17 2.7 EGFET操作原理 18 2.8 表面吸附座鍵結模型 20 第三章 實驗 26 3.1 藥品及材料 26 3.2 實驗設備及分析儀器 26 3.2.1 實驗設備 26 3.2.2 分析儀器 27 3.3 實驗步驟 29 3.3.1 元件製備 29 3.3.2 pH感測 31 第四章 CeO2/FTO元件製備及pH感測特性探討 39 4.1 FTO之pH感測特性及特性分析 39 4.1.1 FTO基材之熱穩定性及導電性 39 4.1.2 FTO基材之耐酸鹼性 40 4.1.3 FTO基材之表面特性探討 40 4.2 硝酸亞鈰前驅鹽濃度對感測特性之影響 40 4.2.1 以不同前驅鹽濃度造成CeO2粉體粒徑大小與比表面積的變化 41 4.2.2 以不同前驅鹽濃度造成CeO2粉體晶粒的變化 41 4.2.3 CeO2/FTO感測膜之片電阻 41 4.2.4 CeO2/FTO感測特性 42 4.3 二氧化鈰固含量對感測特性之影響 42 4.3.1 CeO2/FTO感測膜表面型態 42 4.3.2 CeO2/FTO感測膜之片電阻 43 4.3.3 CeO2/FTO感測特性 43 4.4 旋轉速率對感測特性之影響 44 4.4.1 CeO2/FTO感測膜表面型態與粗糙度 44 4.4.2 CeO2/FTO感測膜之片電阻 44 4.4.3 CeO2/FTO感測特性 45 4.5 塗佈次數對感測特性之影響 45 4.5.1 CeO2/FTO感測膜表面型態與粗糙度 45 4.5.2 CeO2/FTO感測膜之片電阻 46 4.5.3 CeO2/FTO感測特性 46 4.6 煅燒溫度對感測特性之影響 46 4.6.1 CeO2粉末在不同煅燒溫度下之結晶特性 46 4.6.2 不同煅燒溫度下Ce價數的改變 47 4.6.3 CeO2/FTO感測膜之片電阻 47 4.6.4 CeO2/FTO感測特性 47 4.7 膠體溶液反應時間對感測特性之影響 48 4.7.1 不同反應時間CeO2粒子的粒徑大小 48 4.7.2 CeO2/FTO感測膜表面型態 48 4.7.3 CeO2/FTO感測膜之片電阻 49 4.7.4 CeO2/FTO感測特性 49 4.8 溶劑種類對感測特性之影響 50 4.8.1 以不同溶劑反應之CeO2粉體粒徑大小 50 4.8.2 以不同溶劑生成之CeO2粉體比表面積大小 51 4.8.3 以不同溶劑反應之CeO2粉體晶粒大小 51 4.8.4 CeO2/FTO感測膜表面型態 51 4.8.5 CeO2/FTO感測膜之片電阻 52 4.8.6 CeO2/FTO感測特性 52 4.9 不同前驅鹽對感測特性之影響 52 4.9.1 以不同前驅鹽造成CeO2粉體比表面積及晶粒大小的變化 53 4.9.2 以(NH4)2Ce(NO3)6製作CeO2/FTO感測膜表面型態 53 4.9.4 Ce價數的改變 54 4.9.5 CeO2/FTO感測膜之片電阻 54 4.9.6 CeO2/FTO感測特性 55 4.10 章節結論 55 4.11 最佳感測元件之感測特性探討 56 4.11.1 飽和區電性量測 56 4.11.2 遲滯效應 57 4.11.3 時漂效應 57 4.11.4 共存陽離子干擾效應 58 4.11.5 感測溫度效應 58 第五章 CeO2/TiO2/FTO複合材料感測元件之pH感測特性探討 158 5.1 TiO2/FTO酸鹼度感測器參數選擇 159 5.2 塗佈轉速改變對CeO2/TiO2/FTO之感測特性探討 159 5.2.1 CeO2/ TiO2/FTO感測膜表面型態及片電阻變化 160 5.2.2 CeO2/ TiO2/FTO感測特性 160 5.3 電紡收集時間改變對CeO2/TiO2/FTO之感測特性探討 160 5.3.1 CeO2/ TiO2/FTO感測膜表面型態及片電阻變化 161 5.3.2 CeO2/ TiO2/FTO感測特性 161 5.4 電紡工作電壓改變對CeO2/TiO2/FTO之感測特性探討 161 5.4.1 CeO2/ TiO2/FTO感測膜表面型態及片電阻變化 162 5.4.2 CeO2/ TiO2/FTO感測特性 162 5.5 CeO2/TiO2/FTO之XPS分析結果 162 5.6 章節結論 163 5.7 最佳CeO2/TiO2/FTO元件感測特性探討 163 5.7.1 飽和區電性量測 164 5.7.2 遲滯效應 164 5.7.3 時漂效應 165 第六章 結論與建議 197 6.1 結論 197 6.2 建議 201 參考文獻 202

    [1] Pan T.M., Wang C.W., Mondal S., Pang S.T., "Super-Nernstian sensitivity in microfabricated electrochemical pH sensor based on CeTixOy film for biofluid monitoring", Electrochim. Acta, 261, 482-490, (2018)
    [2] Bag S.P., Garu P., Her J.L., Lou B.S., Pan T.M., "High performance sol-gel synthesized Ce0.9Sr0.1(Zr0.53Ti0.47)O4 sensing membrane for a solid-state pH sensor", RSC Adv., 8(38), 21210-21213, (2018)
    [3] Glanc-Gostkiewicz M., Sophocleous M., Atkinson J.K., Garcia-Breijo E., "Performance of miniaturised thick-film solid state pH sensors", Sens. Actuator A-Phys., 202, 2-7, (2013)
    [4] Christofides C., Mandelis A., "SOLID-STATE SENSORS FOR TRACE HYDROGEN GAS-DETECTION", Journal of Applied Physics, 68(6), R1-R30, (1990)
    [5] Liu D., Meruva R.K., Brown R.B., Meyerhoff M.E., "Enhancing EMF stability of solid-state ion-selective sensors by incorporating lipophilic silver-ligand complexes within polymeric films", Analytica Chimica Acta, 321(2-3), 173-183, (1996)
    [6] Koudelka-Hep M., van der Wal P.D., "Microelectrode sensors for biomedical and environmental applications", Electrochim. Acta, 45(15-16), 2437-2441, (2000)
    [7] Lee J.H., Lim T.S., Seo Y., Bishop P.L., Papautsky I., "Needle-type dissolved oxygen microelectrode array sensors for in situ measurements", Sens. Actuator B-Chem., 128(1), 179-185, (2007)
    [8] Bousse L., Mostarshed S., Vanderschoot B., Derooij N.F., "COMPARISON OF THE HYSTERESIS OF TA2O5 AND SI3N4 PH-SENSING INSULATORS", Sens. Actuator B-Chem., 17(2), 157-164, (1994)
    [9] Bergveld P., "Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years", Sens. Actuator B-Chem., 88(1), 1-20, (2003)
    [10] Edgar L.J., Method and apparatus for controlling electric currents, Google Patents, 1930.
    [11] Bergveld P., "DEVELOPMENT OF AN ION-SENSITIVE SOLID-STATE DEVICE FOR NEUROPHYSIOLOGICAL MEASUREMENTS", Ieee Transactions on Biomedical Engineering, BM17(1), 70-&, (1970)
    [12] Lauks I., Chan P., Babic D., "The extended gate chemically sensitive field effect transistor as multi-species microprobe", Sensors and Actuators, 4, 291-298, (1983)
    [13] Pan T.M., Wang C.W., Pan S.Y., "High-Performance Electrolyte-Insulator-Semiconductor pH Sensors Using High-k CeO2 Sensing Films", IEEE Electron Device Lett., 36(11), 1195-1197, (2015)
    [14] Kao C.H., Chang C.W., Chen Y.T., Su W.M., Lu C.C., Lin C.Y., Chen H., "Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors", Sci Rep, 7, 9, (2017)
    [15] Pan T.M., Wang C.W., Chen C.Y., "Structural Properties and Sensing Performance of CeYxOy Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors", Sci Rep, 7, 10, (2017)
    [16] Bag S.P., Lou B.S., Her J.L., Pang S.T., Pan T.M., "Structural and Sensing Properties of Sol-Gel Synthesized Ce2(Zr1-xTix)Oy Sensing Films for pH Sensors", IEEE Trans. Electron Devices, 64(9), 3971-3975, (2017)
    [17] Kao C.H., Chen H., Hou F.Y.S., Chang S.W., Chang C.W., Lai C.S., Chen C.P., He Y.Y., Lin S.-R., Hsieh K.M., "Fabrication of multianalyte CeO2 nanograin electrolyte–insulator–semiconductor biosensors by using CF4 plasma treatment", Sensing and bio-sensing research, 5, 71-77, (2015)
    [18] Huang Y.C., Tsai F.S., Wang S.J., "Preparation of TiO2 nanowire arrays through hydrothermal growth method and their pH sensing characteristics", Jpn. J. Appl. Phys., 53(6), 5, (2014)
    [19] Zulkefle M.A., Rahman R.A., Yusof K.A., Abdullah W.F.H., Rusop M., Herman S.H., "Spin Speed and Duration Dependence of TiO2 Thin Films pH Sensing Behavior", J. Sens., 8, (2016)
    [20] Yao P.C., Chiang J.L., Lee M.C., "Application of sol-gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor", Solid State Sci., 28, 47-54, (2014)
    [21] Zhao R.R., Xu M.Z., Wang J.A., Chen G.N., "A pH sensor based on the TiO2 nanotube array modified Ti electrode", Electrochim. Acta, 55(20), 5647-5651, (2010)
    [22] Yusof K.A., Rahman R.A., Zulkefle M.A., Herman S.H., Abdullah W.F.H., "EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature", J. Sens., 9, (2016)
    [23] Yang S.Y., Chen C.W., Chou J.C., "Investigation on the sensitivity of TiO2:Ru pH sensor by Taguchi design of experiment", Solid-State Electron., 77, 82-86, (2012)
    [24] Li J.Y., Chang S.P., Chang S.J., Tsai T.Y., "Sensitivity of EGFET pH Sensors with TiO2 Nanowires", ECS Solid State Lett., 3(10), P123-P126, (2014)
    [25] Chou J.C., Liao L.P., "Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method", Thin Solid Films, 476(1), 157-161, (2005)
    [26] Huang B.R., Lin J.C., Yang Y.K., "ZnO/Silicon Nanowire Hybrids Extended-Gate Field-Effect Transistors as pH Sensors", J. Electrochem. Soc., 160(6), B78-B82, (2013)
    [27] Van Thanh P., Nhu L.T.Q., Mai H.H., Tuyen N.V., Doanh S.C., Viet N.C., Kien D.T., "Zinc Oxide Nanorods Grown on Printed Circuit Board for Extended-Gate Field-Effect Transistor pH Sensor", J. Electron. Mater., 46(6), 3732-3737, (2017)
    [28] Yang P.Y., Wang J.L., Chiu P.C., Chou J.C., Chen C.W., Li H.H., Cheng H.C., "pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures", IEEE Electron Device Lett., 32(11), 1603-1605, (2011)
    [29] Wang J.L., Yang P.Y., Hsieh T.Y., Juan P.C., "Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures", Jpn. J. Appl. Phys., 55(1), 7, (2016)
    [30] Fernandes J.C., Mulato M., "Synthesis and electrical characterization of ZnO and TiO2 thin films and their use as sensitive layer of pH field effect transistor sensors", MRS Online Proceedings Library Archive, 1675, 53-58, (2014)
    [31] Batista P.D., Mulato M., "ZnO extended-gate field-effect transistors as pH sensors", Appl. Phys. Lett., 87(14), 3, (2005)
    [32] Rahman R.A., Zulkefle M.A., Yusof K.A., Abdullah W.F.H., Mahmood M.R., Herman S.H., "CHARACTERIZATION OF ZNO/TIO2 BILAYER FILM FOR EXTENDED GATE FIELD-EFFECT TRANSISTOR (EGFET) BASED PH SENSOR", J. Teknol., 78(5-8), 33-38, (2016)
    [33] Li H.H., Yang C.E., Kei C.C., Su C.Y., Dai W.S., Tseng J.K., Yang P.Y., Chou J.C., Cheng H.C., "Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor", Thin Solid Films, 529, 173-176, (2013)
    [34] Yin L.T., Chou J.C., Chung W.Y., Sun T.P., Hsiung S.K., "Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate", Sens. Actuator B-Chem., 71(1-2), 106-111, (2000)
    [35] Li H.H., Dai W.S., Chou J.C., Cheng H.C., "An Extended-Gate Field-Effect Transistor With Low-Temperature Hydrothermally Synthesized SnO2 Nanorods as pH Sensor", IEEE Electron Device Lett., 33(10), 1495-1497, (2012)
    [36] Guerra E.M., Silva G.R., Mulato M., "Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol-gel method", Solid State Sci., 11(2), 456-460, (2009)
    [37] Guidelli E.J., Guerra E.M., Mulato M., "Ion sensing properties of vanadium/tungsten mixed oxides", Mater. Chem. Phys., 125(3), 833-837, (2011)
    [38] Abd-Alghafour N.M., Ahmed N.M., Hassan Z., Almessiere M.A., Bououdina M., Al-Hardan N.H., "High sensitivity extended gate effect transistor based on V2O5 nanorods", J. Mater. Sci.-Mater. Electron., 28(2), 1364-1369, (2017)
    [39] Guerra E.M., Mulato M., "Synthesis and characterization of vanadium oxide/hexadecylamine membrane and its application as pH-EGFET sensor", J. Sol-Gel Sci. Technol., 52(3), 315-320, (2009)
    [40] Chiang J.L., Jhan S.S., Hsieh S.C., Huang A.L., "Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system", Thin Solid Films, 517(17), 4805-4809, (2009)
    [41] Lue C.E., Wang I.S., Huang C.H., Shiao Y.T., Wang H.C., Yang C.M., Hsu S.H., Chang C.Y., Wang W., Lai C.S., "pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process", Microelectron. Reliab., 52(8), 1651-1654, (2012)
    [42] Lin J.L., Hsu H.Y., "Study of Sodium Ion Selective Electrodes and Differential Structures with Anodized Indium Tin Oxide", Sensors, 10(3), 1798-1809, (2010)
    [43] Batista P.D., Mulato M., "Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor", J. Mater. Sci., 45(20), 5478-5481, (2010)
    [44] Liao Y.H., Chou J.C., "Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system", Sens. Actuator B-Chem., 128(2), 603-612, (2008)
    [45] Sardarinejad A., Maurya D.K., Alameh K., "The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor", Sens. Actuator A-Phys., 214, 15-19, (2014)
    [46] Das A., Ko D.H., Chen C.H., Chang L.B., Lai C.S., Chu F.C., Chow L., Lin R.M., "Highly sensitive palladium oxide thin film extended gate FETs as pH sensor", Sens. Actuator B-Chem., 205, 199-205, (2014)
    [47] Lin J.C., Huang B.R., Yang Y.K., "IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors", Sens. Actuator B-Chem., 184, 27-32, (2013)
    [48] Chang S.P., Yang T.H., "Sensing Performance of EGFET pH Sensors with CuO Nanowires Fabricated on Glass Substrate", Int. J. Electrochem. Sci., 7(6), 5020-5027, (2012)
    [49] Sabah F.A., Ahmed N.M., Hassan Z., Almessiere M.A., "Influence of CuS membrane annealing time on the sensitivity of EGFET pH sensor", Mater. Sci. Semicond. Process, 71, 217-225, (2017)
    [50] Lin J.L., Chu Y.M., Hsaio S.H., Chin Y.L., Sun T.P., "Structures of anodized aluminum oxide extended-gate field-effect transistors on pH sensors", Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., 45(10A), 7999-8004, (2006)
    [51] Lee P.Y., Chang S.P., Kuo P.J., Hsu E.H., Chang S.J., Shei S.C., "Sensing Performance of EGFET pH Sensors with CZTSe Nanoparticles Fabricated on Glass Substrates", Int. J. Electrochem. Sci., 8(3), 3866-3875, (2013)
    [52] Ibupoto Z.H., Khun K., Willander M., "Development of a pH Sensor Using Nanoporous Nanostructures of NiO", J. Nanosci. Nanotechnol., 14(9), 6699-6703, (2014)
    [53] Kim T.Y., Yang S., "Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing", Sens. Actuator B-Chem., 196, 31-38, (2014)
    [54] Her J.L., Wu M.H., Peng Y.B., Pan T.M., Weng W.H., Pang S.T., Chi L.F., "High Performance GdTixOy Electrolyte-Insulator-Semiconductor pH Sensor and Biosensor", Int. J. Electrochem. Sci., 8(1), 606-620, (2013)
    [55] Pan T.-M., Wang C.-W., Huang Y.-S., Weng W.-H., Pang S.-T., "Effect of Postdeposition Annealing on the Structural and Sensing Characteristics of Tb2O3 and Tb2Ti2O7 Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors", J. Electrochem. Soc., 162(4), B83-B88, (2015)
    [56] Sun C.W., Li H., Chen L.Q., "Nanostructured ceria-based materials: synthesis, properties, and applications", Energy & Environmental Science, 5(9), 8475-8505, (2012)
    [57] Wang K., Chang Y.Q., Lv L., Long Y., "Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film", Applied Surface Science, 351, 164-168, (2015)
    [58] Phoka S., Laokul P., Swatsitang E., Promarak V., Seraphin S., Maensiri S., "Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route", Mater. Chem. Phys., 115(1), 423-428, (2009)
    [59] Ozer N., "Optical properties and electrochromic characterization of sol-gel deposited ceria films", Solar Energy Materials and Solar Cells, 68(3-4), 391-400, (2001)
    [60] Ansari A.A., Kaushik A., Solanki P.R., Malhotra B.D., "Sol-gel derived nanoporous cerium oxide film for application to cholesterol biosensor", Electrochemistry Communications, 10(9), 1246-1249, (2008)
    [61] Kaushik A., Solanki P.R., Ansari A.A., Ahmad S., Malhotra B.D., "A nanostructured cerium oxide film-based immunosensor for mycotoxin detection", Nanotechnology, 20(5), (2009)
    [62] Avellaneda C.O., Berton M.A.C., Bulhoes L.O.S., "Optical and electrochemical properties of CeO2 thin film prepared by an alkoxide route", Solar Energy Materials and Solar Cells, 92(2), 240-244, (2008)
    [63] Skofic I.K., Sturm S., Ceh M., Bukovec N., "CeO2 thin films obtained by sol-gel deposition and annealed in air or argon", Thin Solid Films, 422(1-2), 170-175, (2002)
    [64] Rane N., Zou H., Buelna G., Lin J.Y.S., "Sol-gel synthesis and properties of unsupported and supported mesoporous ceria membranes", Journal of Membrane Science, 256(1-2), 89-97, (2005)
    [65] Yang J.X., Lukashuk L., Li H., Fottinger K., Rupprechter G., Schubert U., "High Surface Area Ceria for CO Oxidation Prepared from Cerium t-Butoxide by Combined Sol-Gel and Solvothermal Processing", Catalysis Letters, 144(3), 403-412, (2014)
    [66] Graciani J., Marquez A.M., Plata J.J., Ortega Y., Hernandez N.C., Meyer A., Zicovich-Wilson C.M., Sanz J.F., "Comparative Study on the Performance of Hybrid DFT Functionals in Highly Correlated Oxides: The Case of CeO2 and Ce2O3", Journal of Chemical Theory and Computation, 7(1), 56-65, (2011)
    [67] Diebold U., "The surface science of titanium dioxide", Surf. Sci. Rep., 48(5-8), 53-229, (2003)
    [68] Owens G.J., Singh R.K., Foroutan F., Alqaysi M., Han C.M., Mahapatra C., Kim H.W., Knowles J.C., "Sol-gel based materials for biomedical applications", Progress in Materials Science, 77, 1-79, (2016)
    [69] Roy D., Roy R., "SYNTHESIS AND STABILITY OF MINERALS IN THE SYSTEM MGO-AL2O3-SIO2-H2O", American Mineralogist, 40(3-4), 147-178, (1955)
    [70] Morikawa A., Iyoku Y., Kakimoto M., Imai Y., "PREPARATION OF NEW POLYIMIDE SILICA HYBRID MATERIALS VIA THE SOL-GEL PROCESS", Journal of Materials Chemistry, 2(7), 679-690, (1992)
    [71] Costa R.O.R., Vasconcelos W.L., "Structural modification of poly(2-hydroxyethyl methacrylate)-silica hybrids utilizing 3-methacryloxypropyltrimethoxysilane", Journal of Non-Crystalline Solids, 304(1-3), 84-91, (2002)
    [72] Bornside D.E., Macosko C.W., Scriven L.E., "SPIN COATING - ONE-DIMENSIONAL MODEL", Journal of Applied Physics, 66(11), 5185-5193, (1989)
    [73] Yates D.E., Levine S., Healy T.W., "Site-binding model of the electrical double layer at the oxide/water interface", Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, 1807-1818, (1974)
    [74] Schoning M.J., Simonis A., Ruge C., Ecken H., Muller-Veggian M., Luth H., "A (bio-)chemical field-effect sensor with macroporous Si as substrate material and a SiO2/LPCVD-Si3N4 double layer as pH transducer", Sensors, 2(1), 11-22, (2002)
    [75] Chou J.C., Chen C.W., "Fabrication and Application of Ruthenium-Doped Titanium Dioxide Films as Electrode Material for Ion-Sensitive Extended-Gate FETs", Ieee Sensors Journal, 9(3), 277-284, (2009)
    [76] Chen C.-Y., Sun T.-P., CMOS, Delta-Sigma pH-to-Digital Converter as New Integrated Device for Potentiometric Biosensors Applications, New Perspectives in Biosensors Technology and Applications, IntechOpen, 2011.
    [77] 陳展慶, 以溶膠凝膠法製備非當量鈮酸鈉鉀與鋰摻雜之壓電薄膜及其特性探討, 國立成功大學碩士論文, 2014.
    [78] 張晞硯, 延伸閘極式金屬氧化物酸鹼度感測器之製備與特性研究, 國立成功大學碩士論文, 2013.
    [79] Pan T.M., Tan C.Y., "Study of structural properties and sensing performance of high performance sol-gel synthesized CeTixOy sensing membranes", Electrochim. Acta, 269, 686-693, (2018)
    [80] Satoh T., Akitaya M., Konno M., Saito S., "Particle size distributions produced by hydrolysis and condensation of tetraethylorthosilicate", Journal of Chemical Engineering of Japan, 30(4), 759-762, (1997)
    [81] "Hierarchically ordered oxides", Applied Catalysis a-General, 182(1), (1999)
    [82] 張宏毅, 二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性, 國立成功大學碩士論文, 2005.
    [83] Akerlof G., "Dielectric constants of some organic solvent-water mixtures at various temperatures", Journal of the American Chemical Society, 54, 4125-4139, (1932)
    [84] Rasheed H.S., Ahmed N.M., Matjafri M.Z., "Ag metal mid layer based on new sensing multilayers structure extended gate field effect transistor (EG-FET) for pH sensor", Mater. Sci. Semicond. Process, 74, 51-56, (2018)
    [85] Chen S.X., Chang S.P., Chang S.J., "INVESTIGATION OF InN NANOROD-BASED EGFET pH SENSORS FABRICATED ON QUARTZ SUBSTRATE", Digest Journal of Nanomaterials and Biostructures, 9(4), 1505-1511, (2014)
    [86] 郭家瑋, 以電紡沉積法製備二氧化鈦酸鹼度感測器之研究, 國立成功大學碩士論文, 2017.
    [87] 徐士軒, 二氧化鈰/摻氟氧化錫酸鹼度感測器之製備研究, 國立成功大學碩士論文, 2017.
    [88] Pan T.M., Wang C.W., Huang Y.S., Weng W.H., Pang S.T., "Effect of Postdeposition Annealing on the Structural and Sensing Characteristics of Tb2O3 and Tb2Ti2O7 Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors", J. Electrochem. Soc., 162(4), B83-B88, (2015)
    [89] 楊政憲, 以溶膠凝膠法製備二氧化鈦酸鹼度感測器之研究, 國立成功大學碩士論文, 2013.
    [90] Kao C.H., Chang C.W., Chen Y.T., Su W.M., Lu C.C., Lin C.Y., Chen H., "Influence of NH3 plasma and Ti doping on pH-sensitive CeO2 electrolyte-insulator-semiconductor biosensors", Sci Rep, 7, (2017)
    [91] Pan T.M., Wang C.W., Chen C.Y., "Structural Properties and Sensing Performance of CeYxOy Sensing Films for Electrolyte-Insulator-Semiconductor pH Sensors", Sci Rep, 7, (2017)
    [92] Chou J.C., Wang Y.F., "Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method", Sens. Actuator B-Chem., 86(1), 58-62, (2002)
    [93] Palit G.C., Elayaperumal K., "PASSIVITY AND PITTING OF CORROSION-RESISTANT PURE METALS TA, NB, TI, ZR, CR AND AL IN CHLORIDE SOLUTIONS", Corrosion Science, 18(2), 169-179, (1978)
    [94] Pan T.M., Huang Y.S., Her J.L., Chiu F.C., "Effect of tantalum content on the structural properties and sensing performance of YbTaxOy electrolyte-insulator-semiconductor pH sensors", Journal of Alloys and Compounds, 784, 386-393, (2019)
    [95] Palit S., Lou B.S., Her J.L., Pang S.T., Pan T.M., "Impact of Sn Content on Structural Properties and Sensing Performance of InSnxOy Thin Film on Flexible Substrate for EGFET pH Sensors", J. Electrochem. Soc., 166(6), B407-B413, (2019)
    [96] Singh K., Lou B.S., Her J.L., Pan T.M., "Influence of Annealing Temperature on Structural Compositions and pH Sensing Properties of Sol-Gel Derived YTixOy Electroceramic Sensing Membranes", J. Electrochem. Soc., 166(4), B187-B192, (2019)
    [97] Her J.L., Bag S.P., Garu P., Lou B.S., Pan T.M., "Super Nernstian pH sensitivity of excess cerium in Ce2-xSrx(Zr0.53Ti0.47)Oy sensing membranes for solid state pH sensors", Sens. Actuator B-Chem., 274, 133-143, (2018)
    [98] Pan T.M., Tan C.Y., "Effect of Ti Content on Structural Properties and Sensing Performance of Sol-Gel Synthesized PrTixOy Sensing Membranes", J. Electrochem. Soc., 164(7), B330-B335, (2017)
    [99] Pan T.M., Wang C.W., Chen C.Y., Her J.L., "Impact of yttrium content and thermal annealing on the structural and sensing characteristics of YbYxOy sensing membranes", Journal of Applied Physics, 119(7), (2016)
    [100] Guidelli E.J., Guerra E.M., Mulato M., "V2O5/WO3 Mixed Oxide Films as pH-EGFET Sensor: Sequential Re-Usage and Fabrication Volume Analysis", Ecs Journal of Solid State Science and Technology, 1(3), N39-N44, (2012)

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE