簡易檢索 / 詳目顯示

研究生: 王瀅嵐
Wang, Ying-Lan
論文名稱: C6神經膠質瘤分泌物質增加小膠質細胞趨化激素MIP-1alpha之表現
Microglial Macrophage Inflammatory Protein-1alpha Expression Upregulated by Glioma-secreted Factors
指導教授: 曾淑芬
Tzeng, Shun-Fen
黃銘超
Huang, Ming-Chao
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 69
中文關鍵詞: 趨化激素神經細胞神經膠直瘤小膠質細胞神經滋養因子
外文關鍵詞: neuron, glioma, neurotrophin, chemokine, microglia
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   神經膠質瘤(glioma)是異常增生之膠質細胞(glial cells)所產生的常見腦部原發性腫瘤(primary brain tumor)。大量小膠質細胞(microglia)與巨噬細胞(macrophage)的侵入是神經膠質瘤的特徵。相關研究證實,神經膠質瘤四周所分泌之趨化因子可能在引發小膠質細胞的活化中扮演重要角色,調節腫瘤生成。我們利用動物腦瘤模式,於大腦皮層植入C6神經膠質瘤細胞株後發現,手術後1周Iba1+ 與 ED1+小膠質細胞已滲入腫塊中心。然而在手術後2周腫塊中心部份主要為Iba1+小膠質細胞。另外,手術後第3天,腫塊四周之Iba1+ 與 ED1+小膠質細胞中可發現monocyte chemoattractant protein-1 (MCP-1) 與macrophage inflammatory protein-1 alpha(MIP-1alpha) 表現。文獻得知C6神經膠質瘤能分泌brain-derived neurotrophic factor (BDNF);但是以BDNF蛋白分子處理小膠質細胞對其MIP-1alpha mRNA表現不受影響。然而利用BDNF處理神經細胞後之培養基(B-NCM)則可提高小膠質細胞中MIP-1alpha mRNA表現量。因BDNF可誘導神經細胞fractalkine mRNA表現量上升,利用fractalkine抗體中和B-NCM後,結果發現fractalkine抗體阻斷B-NCM對小膠質細胞MIP-1alpha mRNA表現量的增加作用。這些研究顯示,B-NCM中的fractalkine無法提高小膠質細胞MIP-1alpha mRNA產量,反而可能影響B-NCM內其他因子所誘導小膠質細胞MIP-1alpha mRNA表現量上升的作用。綜合我們動物與離體實驗顯示,我們推測C6植入後可以藉由引發神經細胞媒介物質產生後,進而誘導神經膠質瘤四周小膠質細胞MIP-1alpha mRNA表現,並促使小膠質細胞的聚集到腫瘤外圍及中心部份。

      Glioma is the common primary brain tumor derived from the abnormal proliferation of the glia. The infiltration of microglia, brain macrophages, is a characteristic feature of glioma. Several studies have addressed that chemotactic factors secreted around glioma may have the regulatory role in the induction of microglial activation, which is to modulate gliomal formation. We used an animal brain tumor model by injecting C6 glioma cells into the rat cerebral cortex, and found that Iba1+ and ED1+ microglia were infiltrated in the tumor center at 1 week after injection (AI). However, Iba1+ cells were the major microglial population observed in the tumor center at 2 week AI. The expression of monocyte chemoattractant protein-1(MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) were also observed in Iba1+ or ED1+ microglia situated at the periphery of rat brain tumor at 3 day AI. Treatment of microglia with brain-derived neurotrophic factor (BDNF), that has been known to be produced by C6 cells, had no effect on MIP-1alpha mRNA expression. However, the conditioned medium collected from neurons treated with BDNF (B-NCM) can upregulate microglial MIP-1alpha mRNA expression. Since BDNF was shown to increase the expression of neuronal fractalkine mRNA, we investigated the regulatory role of fractalkine in B-NCM using anti-fractalkine antibodies to neutralize the molecule in B-NCM. We found that the blockade of anti-fractalkine antibodies increased MIP-1alpha mRNA in microglia treated with B-NCM. The data demonstrate that fractalkine was not involved in the upregulation of microglial MIP-1alpha mRNA by B-NCM. In contrast, this molecule may contribute to suppress the increase of B-NCM-induced microglial MIP-1alpha mRNA expression. Together, based on our in vivo and in vitro results, we suggest that injected C6 cells may secrete BDNF to induce the production of neuronal factors, which upregulate the expression of MIP-1alpha mRNA in microglia around glioma tumor.

    目 錄 1 圖 目 錄 4 英 文 摘 要 6 摘 要 8 縮 寫 表 10 前 言 11 材 料 與 方 法 21 一、材料 21 1.細胞培養材料 21 2.化學藥品 21 3.試劑組 22 4.抗體 22 二、方法 22 2.1活體實驗 22 2.1-1 實驗動物 22 2.1-2 運用立體定位儀手術植入C6 glioma於大白鼠大腦皮層 23 2.1-3 動物灌流及組織製備 23 2.1-4 雙重免疫螢光染色 24 2.1-5 免疫染色 25 2.2離體實驗 26 2.2-1.初級小膠質細胞(primary microglia)培養之製備 26 2.2-2.初級神經細胞(primary neurons)培養之製備 26 2.2-3 初級神經細胞Condition Medium(NCM)處理 27 2.2-4 酵素結合免疫吸附測定 28 2.2-5 聚合酶鏈反應技術 28 A.RNA抽取 28 B.反轉錄 29 C.聚合酵素鏈反應 29 結 果 31 一、神經膠質瘤細胞植入大白鼠皮質後對小膠質細胞活化之影響 31 二、神經膠質瘤周圍之小膠質細胞與星狀膠質細胞的活化 31 三、C6神經膠質瘤移植後小膠質細胞的活化情形 32 四、C6神經膠質瘤植入後MIP-1的表現 33 五、BDNF對小膠質細胞的影響 34 六、神經滋養因子與生長因子對小膠質細胞的影響 35 七、經由BDNF處理後之神經細胞培養基對小膠質細胞的影響 36 八、利用TrkB chimera 中和BDNF處理後之神經細胞培養基對小膠質細胞的影響 36 九、fractalkine對小膠質細胞的影響 37 1. BDNF對神經細胞fractalkine表現量的影響 37 2. 利用fractalkine抗體中和經BDNF處理的神經細胞之培養基對小膠質細胞的影響 37 討 論 39 一、C6神經膠質瘤植入後對小膠質細胞與星狀膠質細胞的影響 40 二、C6神經膠質瘤植入後對小膠質細胞MIP-1與MCP-1分泌之影響 41 三、神經滋養因子與生長因子對小膠質細胞MIP-1的影響 42 四、神經細胞所分泌之fractalkine對小膠質細胞MIP-1 mRNA表現量的影響 42 五、未來研究展望 44 參 考 文 獻 45

    Ahamed, J., Venkatesha, R. T., Thangam, E. B., and Ali, H. (2004). C3a enhances nerve growth factor-induced NFAT activation and chemokine production in a human mast cell line, HMC-1. J Immunol 172, 6961-6968.

    Ambrosini, E., and Aloisi, F. (2004). Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 29, 1017-1038.

    Anthony, D. C., Blond, D., Dempster, R., and Perry, V. H. (2001). Chemokine targets in acute brain injury and disease. Prog Brain Res 132, 507-524.

    Asensio, V. C., Kincaid, C., and Campbell, I. L. (1999). Chemokines and the inflammatory response to viral infection in the central nervous system with a focus on lymphocytic choriomeningitis virus. J Neurovirol 5, 65-75.

    Babcock, A. A., Kuziel, W. A., Rivest, S., and Owens, T. (2003). Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 23, 7922-7930.

    Badie, B., and Schartner, J. (2001). Role of microglia in glioma biology. Microsc Res Tech 54, 106-113.

    Bajetto, A., Bonavia, R., Barbero, S., and Schettini, G. (2002). Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82, 1311-1329.

    Barbero, S., Bonavia, R., Bajetto, A., Porcile, C., Pirani, P., Ravetti, J. L., Zona, G. L., Spaziante, R., Florio, T., and Schettini, G. (2003). Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63, 1969-1974.

    Barron, K. D. (1995). The microglial cell. A historical review. J Neurol Sci 134 Suppl, 57-68.

    Bettinger, I., Thanos, S., and Paulus, W. (2002). Microglia promote glioma migration. Acta Neuropathol (Berl) 103, 351-355.

    Boje, K. M., and Arora, P. K. (1992). Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587, 250-256.

    Chao, C. C., Hu, S., Ehrlich, L., and Peterson, P. K. (1995). Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9, 355-365.

    Chao, C. C., Hu, S., Molitor, T. W., Shaskan, E. G., and Peterson, P. K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149, 2736-2741.

    Chavarria, A., and Alcocer-Varela, J. (2004). Is damage in central nervous system due to inflammation? Autoimmun Rev 3, 251-260.

    Chen, C. J., Chen, J. H., Chen, S. Y., Liao, S. L., and Raung, S. L. (2004). Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. J Virol 78, 12107-12119.

    Chou, T. T., Trojanowski, J. Q., and Lee, V. M. (1997). Neurotrophin signal transduction in medulloblastoma. J Neurosci Res 49, 522-527.

    Conti, I., and Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol 14, 149-154.

    Coscia, M., and Biragyn, A. (2004). Cancer immunotherapy with chemoattractant peptides. Semin Cancer Biol 14, 209-218.

    Cowell, R. M., Xu, H., Galasso, J. M., and Silverstein, F. S. (2002). Hypoxic-ischemic injury induces macrophage inflammatory protein-1alpha expression in immature rat brain. Stroke 33, 795-801.

    Cuadros, M. A., and Navascues, J. (1998). The origin and differentiation of microglial cells during development. Prog Neurobiol 56, 173-189.

    Deininger, M. H., Pater, S., Strik, H., and Meyermann, R. (2001). Macrophage/microglial cell subpopulations in glioblastoma multiforme relapses are differentially altered by radiochemotherapy. J Neurooncol 55, 141-147.

    Fernandez, E. J., and Lolis, E. (2002). Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42, 469-499.

    Flynn, G., Maru, S., Loughlin, J., Romero, I. A., and Male, D. (2003). Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 136, 84-93.

    Galasso, J. M., Liu, Y., Szaflarski, J., Warren, J. S., and Silverstein, F. S. (2000). Monocyte chemoattractant protein-1 is a mediator of acute excitotoxic injury in neonatal rat brain. Neuroscience 101, 737-744.

    Galasso, J. M., Stegman, L. D., Blaivas, M., Harrison, J. K., Ross, B. D., and Silverstein, F. S. (2000). Experimental gliosarcoma induces chemokine receptor expression in rat brain. Exp Neurol 161, 85-95.

    Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., and Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 81, 1285-1297.

    Giussani, C., Carrabba, G., Pluderi, M., Lucini, V., Pannacci, M., Caronzolo, D., Costa, F., Minotti, M., Tomei, G., Villani, R., et al. (2003). Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo. Cancer Res 63, 2499-2505.

    Graeber, M. B., Scheithauer, B. W., and Kreutzberg, G. W. (2002). Microglia in brain tumors. Glia 40, 252-259.

    Grobben, B., De Deyn, P. P., and Slegers, H. (2002). Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310, 257-270.

    Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia 40, 140-155.

    Harada, T., Harada, C., Kohsaka, S., Wada, E., Yoshida, K., Ohno, S., Mamada, H., Tanaka, K., Parada, L. F., and Wada, K. (2002). Microglia-Muller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22, 9228-9236.

    Harrison, J. K., Luo, D., and Streit, W. J. (2003). In situ hybridization analysis of chemokines and chemokine receptors in the central nervous system. Methods 29, 312-318.

    Herrlinger, U., Aulwurm, S., Strik, H., Weit, S., Naumann, U., and Weller, M. (2004). MIP-1alpha antagonizes the effect of a GM-CSF-enhanced subcutaneous vaccine in a mouse glioma model. J Neurooncol 66, 147-154.

    Hiroi, M., and Ohmori, Y. (2003). Constitutive nuclear factor kappaB activity is required to elicit interferon-gamma-induced expression of chemokine CXC ligand 9 (CXCL9) and CXCL10 in human tumour cell lines. Biochem J 376, 393-402.

    Huang, E. J., and Reichardt, L. F. (2003). Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72, 609-642.

    Iannotti, C., Li, H., Yan, P., Lu, X., Wirthlin, L., and Xu, X. M. (2003). Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 183, 379-393.

    Jee, Y., Yoon, W. K., Okura, Y., Tanuma, N., and Matsumoto, Y. (2002). Upregulation of monocyte chemotactic protein-1 and CC chemokine receptor 2 in the central nervous system is closely associated with relapse of autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 128, 49-57.

    Kempermann, G., and Neumann, H. (2003). Neuroscience. Microglia: the enemy within? Science 302, 1689-1690.

    Kielian, T., Barry, B., and Hickey, W. F. (2001). CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol 166, 4634-4643.

    Klein, R., and Roggendorf, W. (2001). Increased microglia proliferation separates pilocytic astrocytomas from diffuse astrocytomas: a double labeling study. Acta Neuropathol (Berl) 101, 245-248.

    Koistinaho, M., and Koistinaho, J. (2002). Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40, 175-183.

    Kulbe, H., Levinson, N. R., Balkwill, F., and Wilson, J. L. (2004). The chemokine network in cancer--much more than directing cell movement. Int J Dev Biol 48, 489-496.

    Lee, Y. B., Nagai, A., and Kim, S. U. (2002). Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69, 94-103.

    Lee, Y. L., Shih, K., Bao, P., Ghirnikar, R. S., and Eng, L. F. (2000). Cytokine chemokine expression in contused rat spinal cord. Neurochem Int 36, 417-425.

    Leung, S. Y., Wong, M. P., Chung, L. P., Chan, A. S., and Yuen, S. T. (1997). Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol (Berl) 93, 518-527.

    Lindia, J. A., McGowan, E., Jochnowitz, N., and Abbadie, C. (2005). Induction of CX3CL1 Expression in Astrocytes and CX3CR1 in Microglia in the Spinal Cord of a Rat Model of Neuropathic Pain. J Pain 6, 434-438.

    Marchetti, B. (1997). Cross-talk signals in the CNS: role of neurotrophic and hormonal factors, adhesion molecules and intercellular signaling agents in luteinizing hormone-releasing hormone (LHRH)-astroglial interactive network. Front Biosci 2, d88-125.

    McGinn, M. J., Sun, D., Schneider, S. L., Alexander, J. K., and Colello, R. J. (2004). Epidermal growth factor-induced cell proliferation in the adult rat striatum. Brain Res 1007, 29-38.

    McGuire, S. O., Ling, Z. D., Lipton, J. W., Sortwell, C. E., Collier, T. J., and Carvey, P. M. (2001). Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 169, 219-230.

    McManus, C., Berman, J. W., Brett, F. M., Staunton, H., Farrell, M., and Brosnan, C. F. (1998). MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 86, 20-29.

    Mizuno, T., Kawanokuchi, J., Numata, K., and Suzumura, A. (2003). Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979, 65-70.

    Moller, T. (2002). Calcium signaling in microglial cells. Glia 40, 184-194.

    Moser, B., and Loetscher, P. (2001). Lymphocyte traffic control by chemokines. Nat Immunol 2, 123-128.

    Murdoch, C., and Finn, A. (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood 95, 3032-3043.

    Murphy, P. M. (1994). The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12, 593-633.

    Ousman, S. S., and David, S. (2001). MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J Neurosci 21, 4649-4656.

    Paglinawan, R., Malipiero, U., Schlapbach, R., Frei, K., Reith, W., and Fontana, A. (2003). TGFbeta directs gene expression of activated microglia to an anti-inflammatory phenotype strongly focusing on chemokine genes and cell migratory genes. Glia 44, 219-231.

    Pantazis, N. J., Zaheer, A., Dai, D., Zaheer, S., Green, S. H., and Lim, R. (2000). Transfection of C6 glioma cells with glia maturation factor upregulates brain-derived neurotrophic factor and nerve growth factor: trophic effects and protection against ethanol toxicity in cerebellar granule cells. Brain Res 865, 59-76.

    Platten, M., Kretz, A., Naumann, U., Aulwurm, S., Egashira, K., Isenmann, S., and Weller, M. (2003). Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54, 388-392.

    Rossi, D., and Zlotnik, A. (2000). The biology of chemokines and their receptors. Annu Rev Immunol 18, 217-242.

    Simpson, J. E., Newcombe, J., Cuzner, M. L., and Woodroofe, M. N. (1998). Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84, 238-249.

    Song, L., and Pachter, J. S. (2004). Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res 67, 78-89.

    Spranger, M., Lindholm, D., Bandtlow, C., Heumann, R., Gnahn, H., Naher-Noe, M., and Thoenen, H. (1990). Regulation of Nerve Growth Factor (NGF) Synthesis in the Rat Central Nervous System: Comparison between the Effects of Interleukin-1 and Various Growth Factors in Astrocyte Cultures and in vivo. Eur J Neurosci 2, 69-76.

    Stolzing, A., and Grune, T. (2004). Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. Faseb J 18, 743-745.

    Streit, W. J. (2002). Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133-139.

    Streit, W. J., Davis, C. N., and Harrison, J. K. (2005). Role of fractalkine (CX3CL1) in regulating neuron-microglia interactions: development of viral-based CX3CR1 antagonists. Curr Alzheimer Res 2, 187-189.

    Tapia-Arancibia, L., Rage, F., Givalois, L., and Arancibia, S. (2004). Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol 25, 77-107.

    Thoenen, H., and Sendtner, M. (2002). Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 5 Suppl, 1046-1050.

    Van Coillie, E., Van Damme, J., and Opdenakker, G. (1999). The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev 10, 61-86.

    Van Damme, J., Struyf, S., and Opdenakker, G. (2004). Chemokine-protease interactions in cancer. Semin Cancer Biol 14, 201-208.

    Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20, 2580-2590.

    Verity, A. N., Wyatt, T. L., Hajos, B., Eglen, R. M., Baecker, P. A., and Johnson, R. M. (1998). Regulation of glial cell line-derived neurotrophic factor release from rat C6 glioblastoma cells. J Neurochem 70, 531-539.

    Vilhardt, F. (2005). Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 37, 17-21.

    Wang, H., Nemoto-Sasaki, Y., Kondo, T., Akiyama, M., and Mukaida, N. (2003). Potential involvement of monocyte chemoattractant protein (MCP)-1/CCL2 in IL-4-mediated tumor immunity through inducing dendritic cell migration into the draining lymph nodes. Int Immunopharmacol 3, 627-642.

    Wang, P. Y., Kitchens, R. L., and Munford, R. S. (1998). Phosphatidylinositides bind to plasma membrane CD14 and can prevent monocyte activation by bacterial lipopolysaccharide. J Biol Chem 273, 24309-24313.

    Watanabe, T., Katayama, Y., Kimura, S., and Yoshino, A. (1999). Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system. J Neurooncol 41, 121-128.

    Whittle, I. R., Macarthur, D. C., Malcolm, G. P., Li, M., Washington, K., and Ironside, J. W. (1998). Can experimental models of rodent implantation glioma be improved? A study of pure and mixed glioma cell line tumours. J Neurooncol 36, 231-242.

    Xie, K. (2001). Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12, 375-391.

    Yabe, T., Herbert, J. T., Takanohashi, A., and Schwartz, J. P. (2004). Treatment of cerebellar granule cell neurons with the neurotrophic factor pigment epithelium-derived factor in vitro enhances expression of other neurotrophic factors as well as cytokines and chemokines. J Neurosci Res 77, 642-652.

    Zhang, J., Geula, C., Lu, C., Koziel, H., Hatcher, L. M., and Roisen, F. J. (2003). Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Exp Neurol 183, 469-481.

    下載圖示 校內:2007-07-29公開
    校外:2007-07-29公開
    QR CODE